
1

Dummy chapter needed for the \chapterauthor
command to work later

CONTENTS

1

2

SOLE: Towards Descriptive and Interactive
Publications

Tanu Malik

Computation Institute
University of Chicago and Argonne National Laboratory

Quan Pham

Dept. of Computer Science
University of Chicago

Ian Foster

Computation Institute
Dept. of Computer Science
University of Chicago and Argonne National Laboratory

CONTENTS

2.1 Introduction . 2
2.2 Related Work . 4
2.3 The SOLE Framework . 5

2.3.1 Publication and Purpose . 5
2.3.2 Science Objects . 6
2.3.3 The Environment . 8

2.4 Using Science Objects to Improve Reproducibility in Papers . . . 9
2.4.1 Language Objects . 10
2.4.2 Data Objects . 11
2.4.3 Workflow Objects . 14
2.4.4 Software Package Objects . 16
2.4.5 Virtual Image Objects . 16

2.5 Science Objects for Repeatability Testing . 17
2.6 Discussion . 21
2.7 Conclusion . 22
2.8 Acknowledgements . 22

Prior to the computational-driven revolution in science, research papers provided the pri-
mary mechanism for sharing novel methods and data. Papers described experiments involv-
ing small amount of data, derivations on that data, and associated methods and algorithms.
Readers reproduced the results by repeating the physical experiment, performing hand cal-
culation, and/or logical argument.

The scientific method in this decade has become decisively computational, involving
large quantities of data, complex data manipulation tasks, and large, and often distributed,
software stacks. The research paper, in its current text form, is only able to summarize the
associated data and computation rather than reproduce it computationally. While papers

1

2 Dummy title

corroborate descriptions through indirect means, such as by building companion websites
that share data and software packages, these external websites continue to remain discon-
nected from the content within the paper, making it difficult to verify claims and reproduce
results. There is an critical need for systems that minimize this disconnect.

We describe Science Object Linking and Embedding (SOLE), a framework for creating
descriptive and interactive publications by linking them with associated science objects, such
as source codes, datasets, annotations, workflows, re-playable packages, and virtual machine
images. SOLE provides a suite of tools that assist the author to create and host science objects
that can then be linked with research papers for the purpose of assessment, repeatability,
and verification of research. The framework also creates a linkable representation of the
science object with the publication and manages a bibliography-like specification of science
objects. In this chapter, we introduce SOLE, and describe its use for augmenting the content
of computation-based scientific publications. We present examples from climate science,
chemistry, biology, and computer science.

2.1 Introduction

Scientific publication has been central to scientific practice since the 17th Century. It pro-
vides a means to describe the methods used in a scientific study and to argue the scientific
logic. Over the centuries, the form of publication has changed little. Yet with the emergence
of the electronic computer, the methods used in science have changed dramatically, with
almost all scientific projects now involving some amount—often large amounts—of com-
putation, to run simulations and/or to extract, analyze, and store information. The static
text-based publication form is seriously insufficient for the current scientific method. It is
inadequate for helping the reader grasp descriptions, follow logic, or interpret results.

To cope with the limitations of the static form of publications, scientists adopt alternate
mechanisms for augmenting the text-based publication. In particular, they include citation
links to input and output data and software packages that may be shared through websites.
However, despite this inclusion of links, the content in these Web resources remains largely
disconnected from the claims made in papers—not allowing, for example, a parametric
equation in a paper to be mapped directly to its implementation or its behavior studied
under different parameters. This disconnect seriously affects readability of a computational
publication and limits readers and reviewers from being able to assess the validity of findings,
determine workability of results on different parameters, or reuse data and methods for their
own research. It is an implied understanding in scientific domains that a true assessment
of a computational publication is only feasible if readers have in-depth knowledge of the
computational tools used in the research. It is only thus that mere descriptions are sufficient
and an out-of-band communication channel with the authors becomes less important.

To improve readability of computer programs, Donald Knuth proposed literate program-
ming [22], a macro-based mechanism that intermingles descriptions of abstract concepts
with source code. Thus source code is read in a sequence that gives the best possible expo-
sition of the code instead of the machine-imposed sequence as required by the programming
language. Tools such as Web, CWeb, and NoWeb that adopt the literate programming ap-
proach produce compilable source code with one command (tangle) and description with
another (weave). Such tools generate more meaningful documentation that can easily be
maintained as software programs and libraries undergo revisions[65, 51].

Literate programming can also be used for assessing claims in a publication. A exemplar
is the Sweave [26, 27] tool that allows an author to embed R code for complete data analyses

SOLE: Towards Descriptive and Interactive Publications 3

in Latex documents. Readers and reviewers can assess the validity of the figures and plots in
a publication by executing the Sweave file in their local R environment. While Sweave serves
as a verifiable framework for reproducing research described in papers, authors must adopt
the Sweave framework prior to authoring papers. This requirement becomes an impediment
for most authors, who often publish first and make publications reproducible post hoc,
perhaps in response to their being highly cited by the wider research community. In addition,
computation-based publications must increasingly make content associations beyond those
enabled through literate programming in order to improve readability and assessment.

An approach toward making computation-based publications reproducible post hoc is
to augment the content in the paper with computational and data elements of research. For
instance, pseudo code can be augmented with an accompanying source code implementation;
data values can be augmented with annotations; dataset descriptions can be augmented
with metadata or even download history, thus making the publication more descriptive
and readable. Similarly, publications that describe performance, robustness, or stability
of approaches can be augmented with an accompanying package or environment to test
the workability of the procedures under varying parameters. Such materials can help the
reader to interact with and assess experiments. Finally, some publications reach conclusions
on a scientific method being executed/simulated in a specialized environment such as a
supercomputer or a cluster that cannot be replicated. Verification of such conclusions can
only be made if a trustworthy provenance trace of the experiments is associated with the
publication. Ideally, the reader should be able to replay the provenance trace.

We face at least three technical challenges when we seek to associate papers with com-
putational artifacts in a descriptive or interactive manner. First, we need to transform each
computational artifact into a form amenable to linkage with a paper. In our work, this
means that important classes and functions in source code files must be associated with
URLs and that datasets must be recorded in registries that specify dataset locations and
access methods. It also means that data analysis pipelines must be cast as workflows with
appropriate interfaces that specify inputs and functional forms, or alternatively, must be
associated with software on an adequately provisioned virtual image. A second challenge
concerns the manner in which linkages are represented in papers. Using URLs to refer to
computational artifacts is often unwieldy, especially when an object is referenced multiple
times. A third challenge relates to presentation: Clicking on a link for a computational ar-
tifact should lead to an adequate presentation to the user. These challenges are primarily
technical in nature, but addressing them is vital for authors.

In this chapter, we describe Science Object Linking and Embedding (SOLE), a system
that addresses these challenges and in doing so makes it convenient to link research pa-
pers with associated computational artifacts, such as source codes, datasets, workflows,
repeatable packages and virtual images. SOLE provides tools that turn data, methods, and
processes used in a scientific method to granular units of knowledge termed science objects.
Authors identify science objects with human-readable tags; the tools convert each tagged
science object into an associated linked data object identified by a URI. For ease of man-
agement, the tags, URIs, and accompanying representation are maintained in a metadata
repository: what is, in effect, a science object bibliography. To aid authors with the linking
process, SOLE also provides a web interface that allows authors to associate groups of words
in a research paper with one or more science object tags. Clicking a link in the text results in
the display of an appropriate representation of the science object. In addition, SOLE persists
these objects, which can be accessed and executed on-demand by users to validate or repeat
an experiment in a publication.

Through SOLE, we make the following contributions toward the emerging area of repro-
ducible research:

4 Dummy title

1. We describe a comprehensive system based on tools that lets authors convert
their computational products to a form amenable to linking with their publica-
tions. These command-line tools are easy to use and can be adopted by authors
anytime—either while investigating the scientific method or post hoc after the
publication is written.

2. The author need not change their authoring environment, but simply include
packages or use an application that associates the SOLE system as a bibliographic
tool of computational products.

3. We demonstrate the efficacy of this framework through various examples taken
from the domains of climate science, biology, chemistry and computer science.

The remainder of the chapter is organized as follows: Section 2.2 describes related work.
In Section 2.3 we describe the overall framework of SOLE and give an overview of the
different science objects that can be used to augment a publication. We then describe
methods and tools to create science objects and demonstrate how they can be used to
augment publications (Section 2.4). In Section 2.5, we describe a specialized science object
that can be used toward peer-review and repeatability testing. We present a discussion on
reproducible research in 2.6, and finally conclude in Section 2.7.

2.2 Related Work

The first step towards reproducible research is to have open data and code. Thus initiatives
such as Open Data [41], Open Source [42], and Open Access [40] thus all contribute to the
meaningful association of computational products with publications. The Panton Principles
lay out the principles for Open Data sharing, permitting any user to download, copy, ana-
lyze, reprocess software, or use data for any other purpose without financial, legal, or tech-
nical barriers [36]. Sparselab and Wavelab from Stanford toolkits demonstrate the impact
of open code and open access on an entire field of research [10]. The Open Archives Ini-
tiative Protocol for Metadata Harvesting (OAI-PMH) and Open Archives Initiative Object
Reuse and Exchange (OAI-ORE) translate some of these principles by exposing repository
interfaces through structured metadata, thus making them compatible with reproducible
research [25, 24]. eScience projects such as NanoHub [21] and RunMyCode.org [62, 52]
(also described in the chapter by Stodden et. al.) allow sharing of code and applications,
while open-access journals, such as PloS ONE [45], Giga Science [15], and BioMed Cen-
tral [4] contribute to unrestricted access via the Internet to peer-reviewed scholarly journal
articles.

Open is not sufficient; code and data must be linked with research papers. Several
projects have demonstrated the concept of reproducible research papers by focussing on
one or more aspects. Utopia [2] associates concepts in a paper with external annotations
retrieved from an online meta data store. Annotations are publicly shared and readers can
further comment upon them. The chapter on VisTrails [23] by Freire et. al. associates figures
and results in the paper with executable components. It allows authors to publish work-
flows and associated provenance and hyperlink to these artifacts in the article. Workflow
systems such as Taverna [39], MyExperiment [16], Kepler [1], Swift [69], and Galaxy [17]
also capture provenance, but do not link provenance to publication as in VisTrails. How-
ever, as demonstrated by Gavish and Donoho, computational results from these systems
can be referenced via a URL and thus archived and published as public repository services

SOLE: Towards Descriptive and Interactive Publications 5

for everyone to access [14]. Similarly, the Collage authoring environment allows a researcher
to publish scientific experiments through scripts and usable forms [38].

Sweave [26, 27] and Dexy [9] are literate programming environments, which if adopted
from the beginning of the scientific process can lead to papers with embedded source code
and derived results. The Author-Review-Execute Environment shows how to achieve re-
peatability through a notion of linked results, but it locates the results archive on authors’
own machines [33]. This approach requires that each author maintain a server and install
the service to expose the data and execution resources, which raises issues of security and
adoption. The SHARE environment creates a virtual image providing the execution services
directly on its server [66].

An increasing number of conference and journal publications now mandate the need
for repeatable experiments so that the reviewers and editors can re-run the exact same
experiments with the same method on the same or similar system, and obtain the same or
similar results. This approach has been deemed important for computer systems research in
which measurement of real systems is important [29]. Conferences such as ACM SIGMOD
have experimented with requiring repeatability [29, 28, 13]. However, as documented by
recent experiments in repeatability testing, testing can be arduous and time consuming for
both authors and testers [53]. Authors have to prepare code, document it, and explicitly
render all dependencies on compilers, operating systems, and hardware. For testers, assessing
code and data for repeatability can be challenging since documentation is rarely complete
and perfect.

Mesirov emphasized on the need of reproducibilityble research systems that make it easy
for authors to perform analyses and then embed them directly into a paper [30]. SOLE is a
step towards the realization of such a combined environment: It targets authors for whom
experimentation and writing research papers continue to remain separate activities, but who
would also like a less burdensome yet efficient mechanism to associate their research papers
post-hoc with the inputs and outputs of the scientific process. SOLE allows both readers
and reviewers to see more detailed descriptions beyond those described in the paper and to
repeat experiments to check assumptions, robustness, and validity of data.

2.3 The SOLE Framework

The SOLE framework [44, 55] assists authors to present their publications in a descriptive
and interactive manner to readers and reviewers. The framework consists of tools that aid
authors to render their computational research in a form amenable to linking with a publica-
tion and for use by readers and reviewers for assessment and verification. In this section, we
describe the framework and its elements. We present first its architectural components and
then the tools that authors can use to create science objects and to present their publication
in a descriptive and interactive manner.

2.3.1 Publication and Purpose

We are interested in enabling the capture of research studies that process and combine large,
diverse longitudinal, complex and distributed data using computing to generate results.
We assume that such studies are primarily disseminated through conference and journal
publications that typically have a page limit, thereby limiting descriptions in a publication.
The investigators who perform such studies are the primary authors of these publications,
which are assessed and verified by readers from the wider community.

6 Dummy title

Authors typically use the document metaphor in which descriptions and claims about
the chosen scientific method are made with the help of textual elements, such as text, figures,
tables, images, plots, and bibliographic links. A reader as a first step is interested in learning
and understanding the scientific method, but soon graduates to reading the publication
with a purpose, which may vary based on their need and role (See Table 2.1). For instance,
some readers may want to repeat experiments for reviewing purposes to verify the author’s
claim that the experiments are correct. Alternatively, if an author claims development of a
software package, readers may want to reuse that package in their own research.

TABLE 2.1: Reader purposes for evaluating a scientific publication

Purpose Meaning
Reference Be able to reference data, methods, and processes at various gran-

ularities.
Redescribe Annotate the publication text with further descriptions.
Repeat Execute the processes followed in the original publication in the

same execution order and under the same environment as
Rework Execute the processes followed in the original publication in the

same execution order and under the same environment but with
different parameters.

Reuse Reuse and share data, method and processes or any constituent
part of it.

Reproduce Repeat but with different data, method, hardware, environment,
etc.

Review Be able to audit and validate results.

2.3.2 Science Objects

The SOLE system provides authors with tools that turn data, methods, and processes used in
a scientific method to granular units of knowledge, termed as science objects. Science objects
are self-contained— they contain the content of a data, method or process and metadata,
such as the Uniform Resource Identifier (URI) related to the content. The metadata and
content of a science object may vary depending upon whether the object refers to a data,
method or process. The objective is to use tools to build complete science objects so that
they satisfy one or more of readers’ purposes as well as contain information that makes
them amenable to be linked or embedded with a paper.

SOLE tools can be used to create two types of science objects: descriptive and interactive.
Descriptive science objects are static and self-contained, in that the content in them is
sufficient for a reader to satisfy their purpose. Such objects include annotations, source
code fragments, provenance records, database records from a variety of sources, and software
packages. Interactive science objects allow a reader to satisfy the purpose through execution
of software. The objects have associated metadata that describe how to execute the software
and are also aided with an accompanying infrastructure for execution. Examples of such
objects are workflows, and virtual images.

Prior to using a SOLE tool, the author must define the scope of the science object. This is
achieved through a user-defined tag. Once a scope is defined, a SOLE tool can automatically
populate the metadata and content of a science object. In general, to scope a science object
in SOLE, the author declares a tag with the following syntax:

begin type name1| . . . |namen

SOLE: Towards Descriptive and Interactive Publications 7

[science object content]

end
in which begin and end delimit the tag, type defines the kind of science object to create,
and name1 to namen are user-defined names. Thus, the same object can be tagged by more
than one name. SOLE’s tools process the declared tag and based on each tag’s type definition
creates a science object. The tools also associate a set of metadata elements representing
the object, including a reference to the object as a URI. The exact location where the tag
should be placed depends upon the type of science object. In the following list we describe
the science objects in SOLE, where to place the tag and provide an overview of how the tools
process the tags (we will describe the tools in detail in Section 2.4).

SOLE supports five kinds of science objects:

Language objects. To create language objects, the author places the tags in source code
files. An example of such a tag is described in Section 2.4.1. The SOLE tool uses Ctags [8]
to create the language objects. in a file, but appends a URI to the language objects. We
have expanded the Ctags utility to allow for user-defined tags as described above and to
include more than one program functions. This allows for linking an algorithm in a paper
with multiple functions and data structures defined in multiple files.

Data Objects. To create data objects, the author places tags on PDF files or on the down-
load history, if a dataset is downloaded from the Web. Examples of such tags are described
in Section 2.4.2. SOLE uses the Poppler library [47] to extract tagged annotations from PDF.
The metadata of the tagged annotation includes the URI of the PDF, the exact location in
the PDF where annotation was made, and the annotated text. SOLE uses the Places schema
of the Firefox browser to generate a linkable download history.

Workflow Objects. To create workflow objects, the author places tags on functions in the
source file by inserting tags with the workflow tag type. Inputs, outputs and function defi-
nitions are determined through the tag type. These workflow objects are defined in Section
2.4.3. SOLE tool creates a workflow object that conforms to the Galaxy-ES workflow systems.
Galaxy-ES provides an open, web-based platform for specifying tools and running compu-
tational experiments as workflows [17]. Each tagged function is automatically wrapped as
an appropriate Galaxy tool definition and hosted on the web-server instance connected with
Galaxy. Authors can further specify if web services should accept user specified parameters
and types of data.

Software Package Objects. No tags are required to create software package objects.The
SOLE tool uses CDE for creating the package, but wraps the package with user-supplied tag
and the resulting metadata annotated software package object is uploaded to the database
(Section 2.4.4).

Virtual Image Objects. There are no tags required to create a virtual image objects.
Tags are, however, placed in a readable file in the virtual machine. SOLE tools reads the
file to export information about the virtual image and create a virtual image object con-
taining necessary metadata about the image and a URI that allows secure connection to
the image (Section 2.4.5).

In addition to the above described science objects, SOLE creates replayable packages
(Section 2.5), which allow an author to assemble code, data, environment, and a reference
execution trace into a single package that can be distributed easily, for example to testers
who want to re-execute the full source code. Readers and testers can view the execution

8 Dummy title

trace and specify, at a process and file level, nodes of the graph that they want to re-execute,
thus saving time and effort for repeatability testing. This SOLE tool internally depends upon
CDE [19, 18] a utility for creating x86 Linux-based packages that requires no installation,
configuration or root permissions. It is also described in detail in the chapter by Guo et.
al. We have further extended the CDE utility to store a provenance graph at the process,
and file-level representing a reference run-time execution, which the readers can view and
replay.

Lo
ca

l E
nv

iro
nm

en
t

SO4

SO3

SO2

SO1

Remote Environment

SOLE

Interactive
Publication

Display

R
epeat

R
eproduce

R
eveal

R
eference

R
euse

Readers

SO5

Execution EnvironmentAuthors

SO6

FIGURE 2.1: The SOLE Architecture. Tools create and upload science objects to a SOLE en-
vironment, which consists of a metadata repository used to store information about science
objects and an execution environment used for interactive science objects. The metadata
repository acts as a web-based bibliography, indexed by keywords, which can be used by
authors in their authoring environment to associate phrases with objects.

2.3.3 The Environment

The SOLE environment hosts the publication and the science objects. The publication is
rendered as a Web page; The science object specification is stored in FluidInfo [12], a
lightweight key-value data store, with a complete set of permissions to give users full control
over their objects and tags. Depending on the type of science object, its content is either
stored in the data store as a value, or the value is a URI that points to a file in the execution
environment. Both the storage and the execution environment is currently on the Amazon
cloud.

SOLE provides a simple query interface that allows users to search for science objects
through their tag names. Since the same tag name may be associated with multiple science
objects, the reader must first choose amongst the available options. SOLE provides the reader
with a succinct description of the science object in order for the reader to make this choice.
Once a science object is retrieved, the author chooses values, phrases, figures or tables within
the publication content and links those chosen elements to the science object by clicking on
“Attach SO”. Internally, this links the chosen element with the science object in a manner
similar to a citation being linked to a bibliographic entry.

The environment supports some additional features, namely the bibliography specifica-
tion of all science objects can be exported to CSV and XML. The authoring environment
can be HTML or Word. The environment currently does not support creation or search of
user-defined objects. It also does not support collaborative use, though a commenting fea-
ture allows many readers to provide feedback on the science object regarding for example,
its intended purpose and ability to serve that purpose. A more interactive user-interface is
part of our future work.

SOLE: Towards Descriptive and Interactive Publications 9

Figure 2.1 shows the SOLE architecture. Tools create and upload science objects to a
SOLE environment, which consists of a metadata repository used to store information about
science objects and an execution environment used for interactive science objects. The
metadata repository acts as a web-based bibliography, indexed by tag names, which can
be used by authors in their authoring environment to associate text phrases and figures
with science objects. Figure 2.2 shows the SOLE system in action through an example of a
language object.

Load Create Link View Configure Account

Science Objects

Language Objects

DataSets

Workflows

Virtual Images

Reclassify
Reproject

Figure1

Aggregate

MLCT
NLCD

Figure2

ami-102991

ami-102992

SOLE

t@ aggregate
aggregateFractions <- function
(mlct, aggRes= 5/60, overwrite=
FALSE, ...) {
 aggBrickFile <-
 if(mlct$Amin < 1)
 paste(deparse(substitute
(mlct)),
 "Amin", mlct$Amin)
 else
 paste(deparse(substitute
(mlct)))
 mlct$agg <-
 if(overwrite)
 aggregate(mlct$fracs)
 else
 brick(list.files(getwd()))
 layerNames(mlct$agg) <-
layerNames(mlct$fracs)
 mlct
}
t@

t@ aggregate
aggregateFractions <-
function(mlct,
aggRes= 5/60,
overwrite= FALSE, ...)
{
 aggBrickFile <-
 if(mlct$Amin < 1)
 paste(deparse
(substitute(mlct)),
 "Amin",
mlct$Amin)
 else
 paste(deparse
(substitute(mlct)))
 mlct$agg <-
 if(overwrite)
 aggregate(mlct
$fracs)
 else
 brick
(list.files(getwd()))
 layerNames(mlct
$agg) <- layerNames
(mlct$fracs)
 mlct
}
t@

>>./sole.sh ./test.R

Step 1: Tag source file test.R

Step 2: Run SOLE on
test.R; Create SO

Step 3: Search SO with tag name and link

FIGURE 2.2: Figure 2.2 demonstrates steps that an author follows to create and associate
science objects in SOLE. The author first identifies the phrase e.g., “Aggregate” in the
publication text that would be better understood, assessed and/or verified by the reader
if augmented. The author then tags the corresponding source code, runs a SOLE command
line tool to create the necessary metadata, and finally associates the phrase “Aggregate’ in
the paper by recalling it with its tag through a queryable interface. The reader views the
implementation of the aggregate function and understands the merit.

2.4 Using Science Objects to Improve Reproducibility in Papers

We use published examples from climate science, computer science, and biochemistry to
demonstrate the use of science objects. Our climate science and computer science examples
are from publications that are part of the Center for Robust Decision making on Climate
and Energy Policy (RDCEP), a collaborative, multi-institutional project that aims to im-
prove the computational models needed to evaluate climate and energy policies and to make
robust decisions based on outcomes [63]. In RDCEP, sharing science objects in the form of

10 Dummy title

data, tools, and software is critical; it enables scientists to compare models and to build
more accurate models. Currently in RDCEP science objects are shared through a com-
panion web site. We show here how to construct these science objects and link them with
RDCEP publications using SOLE. We have also taken biochemistry publications [46] that
use PubChem [64] datasets to demonstrate the use of annotated dataset science objects.

2.4.1 Language Objects

Computational research papers abstract execution and source code and typically convey
computational concepts through equations, methods, pseudo-code or algorithms. While such
abstractions are necessary to communicate with the reader at a conceptual level, they can
hide vital details that are present in the source code. For verification of the text, these
details must be made available along with the conceptual description [32].

For instance, Cai et. al. [6] describe a numerical dynamic program for multi-stage decision
making problems. The paper describes the pseudo code for the numerical dynamic program
but does not provide implementation details of the program, such as whether floats or ints
are used for approximation or whether the program uses a top-down memoization approach
or a bottom-up method for solving sub-problems. Such details if present along with the
algorithmic description can be vital for a reader who plans to apply the algorithm on large
amounts of data since a bottom up approach has no overhead for recursion.

Similarly interdisciplinary research papers on business and industrial engineering that
use monte-carlo simulation methods to decide about risk and uncertainty often ignore crucial
details such as the chosen probability of distribution on its inputs. In business domains, it
is typical to use a triangular distribution instead of a uniform distribution, which is more
common in industrial engineering. However, unless this finer detail is associated with the
description of monte-carlo methods in the paper, it is difficult to quickly verify if the paper
has adopted known knowledge.

SOLE’s language science objects improve overall readability and understanding of con-
cepts described in a paper by annotating them with details present in source codes. Two
approaches for annotation have been explored in previous work. In the first approach, the
concept and the source code are mapped to a pre-defined ontology class. For instance, an
initialization step and the configuration file will map to an initialization class. This ap-
proach is demonstrated in ontologies such as MGED [67] and EXPO [54] that allow for the
linking of experimental descriptions with the resources used. In the second approach, there
are no predefined vocabulary classes, but a language object is defined on the fly by taking
a fragment from the source code and associating it with the algorithmic description in the
paper. In SOLE, we follow the second approach since it allows greater flexibility.

SOLE uses the Ctags [8] and user-defined tags on source files to create language objects
on the fly. By default, Ctags generates an index (or tag) file of language objects found
in source files that allows these items to be quickly and easily located. A tag signifies a
language object for which an index entry is available (or, alternatively, the index entry is
created for that object). To identify a language object, Ctags identifies the language of the
source code file and calls the appropriate language parser to operate on the file. Whenever
the parser finds an interesting token, it calls a function to define a tag entry. Ctags parsers
are available for more than forty programming languages. In SOLE, we have modified Ctags
parsers for common programming languages, such as C, C++, JAVA, and R. The modified
parsers identify both language specific tokens and user-defined tokens (described shortly),
which can be present within a language object, span across more than one language token,
or across source code files.

The user-defined tokens are declared according to the syntax defined in 2.3.2, in which
the words begin and end are replaced with comment style of the source code, type defines

SOLE: Towards Descriptive and Interactive Publications 11

the type of source code object, and the name declares the arbitrary concept to which the
user wants to associate the language object(s). The name is indexed and tagged, and the
author can use the tag to associate this user-defined object with the phrases in the text.
Figure 2.3a shows an R function that is annotated with user-defined tags. It also shows the
accompanying metadata about the function, which is part of the language object.

Demonstration: The Best. et. al. paper on the “Synthesis of a Complete Land Use/Land
Cover Dataset for the Conterminous United States” [3] is a computational paper that gener-
ates a new land cover dataset for the conterminous USA called “PEEL0”. The paper proposes
novel synthesis methodology, which combines information from multiple sources by estab-
lishing a common classification scheme at lower spatial resolution. It shows how to generate
the dataset by combining data from existing data products the MODIS Land Cover Type
(MLCT) and the National Land Cover Database (NLCD).

In the paper, the synthesis methodology, which is a 3-step process is described conceptu-
ally. For lack of space, one step of the methodology is shown in Figure 2.3b. Please refer to
the paper [3] for the other two steps. Finer algorithmic details, such as the specific R func-
tions used for re-projection or reclassification are not described. By attaching a language
object, the author can make the definition of these terms precise and remove ambiguities
in interpretation. Annotated science objects from this paper are demonstrated in the SOLE

system [56] and linked to specific text phrases.

(a) A language object with tagged
source code

Decomposition: The need for decomposition arises when a class definition is a hybrid of a fun-
damental types in the final desired classification. MLCT features a “cropland / natural veg-
etation mosaic” class that we unpack in order to assign a portion of its area to agricultural
production and the rest to natural covers. Decomposition, in contrast to disaggregation or
downscaling, holds the spatial resolution constant and makes no attempt to impart additional
spatial precision to subcell distributions of LULC.

Our general algorithmic approach can be summarized as follows:

1. Prepare MLCT data.

(a) Reproject to geographic coordinates and mask cUSA study area.

(b) Reclassify to PEEL0 classification.

(c) Calculate per-pixel, per-class areas at native resolution.

(d) Aggregate to the 5� grid.

(e) Decompose the mosaic fraction into crop and natural cover components to give total
MLCT cropland. This is PEELa

0.

2. Prepare NLCD data for use as correction layer.

(a) Reproject to geographic coordinates and mask cUSA study area.

(b) Reclassify to PEEL0 classification

(c) Calculate per-pixel, per-class areas at native resolution.

(d) Aggregate to the 5� grid.

3. Combine datasets to produce PEEL0.

(a) Revert mosaic decomposition that produced PEELa
0.

(b) Selectively incorporate into PEELa
0 cover fractions for water, wetland, and urban classes

from NLCD.

(c) Decompose mosaic fraction into crop and natural cover components. This is PEEL0.

3.1 Preparing the MODIS Land Cover Type

The synthesis of PEEL0 begins with the global MLCT product. We systematically incorporate
the full depth of information offered by MLCT. Rather than interpret the secondary classification
as the next most likely possibility, we accept the triplet of primary class, secondary class and
confidence level as an expression of the subpixel composition of that area. Aggregation of MLCT
from 15�� to 5� blurs the spatial precision implied by this formula by treating the local 20 × 20 × 3
array as a probabilistic expression of each 5� cell’s cover composition. We show in Section 3.1 that
this approach, given a principled assumption about the relationship between confidence level and
the allocation of subpixel area among the detected classes, improves the estimates of acreages in
aggregate as well as their spatial distributions, particularly for cropland.

MLCT comprises a set of tiles in a global equal-area sinusoidal projection. To prepare this
dataset for use in this study, we first patched those tiles together and reprojected the resulting
mosaic to geographic coordinates. We then extracted the conterminous US study area using the
subset of cells proscribed for PEEL0 above in Section 2. This area includes the water bodies on the
American side of the international border across the Great Lakes but not oceanic waters beyond

6

(b) Conceptual Description in the Paper

FIGURE 2.3: Enhancing conceptual description with Language Science Objects

2.4.2 Data Objects

Research papers commonly cite data through a bibliographic reference or through a dig-
ital object identifier (DOI). The latter approach provides a permanent identifier for the
data, even if the location of data or its metadata change over time. While these citation
mechanisms are necessary for linking datasets they may be insufficient for the purpose of
repeatability since they do not specify which part of a dataset is used in the research pa-
per. For instance simply referencing a report that is 100 pages long often does not help. A
reviewer verifying values or tables taken from the report must know the references at the
granularity of pages and paragraphs.

The problem of coarse linking of datasets is acute when the web link refers to an on-
line database such as PubChem. This database allows users to access subsets of data (e.g.,
molecules) from its repository through Web forms and query interfaces. Accessed datasets
have a scientific import for research, but are commonly cited using the web address of the
primary repository. Research papers may provide text descriptions of how the dataset was

12 Dummy title

downloaded from the primary online database, and include specification of query parame-
ters, such as dates or spatial region clauses. In a few cases publications provide a link to
the downloaded dataset. In neither case can the reviewer verify how the dataset was de-
rived from the database, with the specification often falling short. Reviewers often have to
re-learn the mechanism for downloading the dataset as used in the publication. It would be
helpful if the downloaded dataset could be identified with a link or a DOI that is derived
from the primary database’s link or DOI and that also includes metadata, such as query
parameters that describes how the dataset was obtained.

An important direction towards citing data at a finer granularity is the Open Archives
Initiative Object Reuse and Exchange (OAI-ORE) project, which exposes the rich content
in Web resources to support their reuse in authoring, exchange, and preservation. Web re-
sources are considered as compound digital objects consisting of many distributed resources
with multiple media types including text, images, data, and video. The project goal is to
expose the rich content in these aggregations through a specification, which hopefully may
become a standard for describing Web resources.

While OAI-ORE provides a useful specification for Web resource citation, the need to
supply many metadata values as part of the specification can be cumbersome for an author.
Therefore in SOLE our primary focus is on tools that can provide input values to the metadata
specification in an automated way. SOLE provides two tools for automating the metadata
extraction problem. For PDF sources, SOLE provides, PDFExtractor, a tool that extracts
segments from a PDF or postscript document and produces a bibliography of the segments.
The segments have the DOI of the primary PDF but are enhanced with additional metadata
as required by the OAI-ORE specification. If the datasource is an online database, SOLE
provides RepAudit, a browser plugin to silently audit the parameter specification or the link
traversal. It provides both the downloaded dataset in the original format and also provides
a metadata file, based on OAI-ORE specification with values of the metadata entries. We
use examples to illustrate the use of the two tools:

PDFExtractor extracts segments, such as text, images that are selected by the user through
the annotation command in the PDF reader. Figure 2.4a shows a PDF document with
a segment selected by the user. Figure 2.4b shows the resulting science object, indexed
through user-defined tags. Metadata in the resulting science object is according to the
OAI-ORE specification and enables precise location of the segment within the PDF. Inter-
nally the PDFExtractor uses the Poppler library [47] to extract the segments and attach
metadata specification to the extractions. If the user is connected to a SOLE environment,
PDFExtractor also transmits the bibliographic information to the FluidInfo database.

Demonstration: Authors annotate “Feasibility of U.S. renewable portfolio standards
under cost caps and case study for Illinois”, which is a policy paper that surveys US state
renewable portfolio standards (RPS), cost caps, and studies in particular the feasibility of
the RPS proposed for Illinois through a cost model [20]. The paper reports RPS-related data
from more than a dozen reports (cited in the references) published by different federal and
state energy departments. Often RPS and cost values, for purposes of brevity, are aggregated
from their original source and an average is mentioned. It is difficult to verify such a policy
paper unless the papers are referenced with page numbers and the approximate location of
each value on the page.

We used SOLE to annotate the reports cited in this paper [57]. For example, the reference
“[13]” mentioned in the excerpt of the paper in Figure 2.4b is one report that is tagged.
The tagging is shown in Figure 2.4a. The authors simply annotate the PDF with an easy to
remember tag, such as “Texas”, and then execute the PDFExtractor tool on the saved PDF.
The tool generates a corresponding science object with the additional metadata about the

SOLE: Towards Descriptive and Interactive Publications 13

page number in the PDF and approximate location, and also uploads the science objects to
the SOLE system. The author then attaches these science objects to the text phrases in the
paper. The reader can verify that even that the authors have approximated the value of $1
per MWh.

(a) Annotate the PDF by selecting a rectangular region and adding tag Texas

State Renewable Portfolio Standards

HR2454
IL
NJ
CA
Other States

2000 2005 2010 2015 2020 2025
year

0.0

0.1

0.2

0.3

0.4

0.5

R
e

n
e

w
a

b
le

 E
le

ct
ri
ci

ty
 R

e
q

u
ir
e

m
e

n
t

Figure 1: Total renewables generation requirements as percentages of retail sales for 25 states with RPS
standards set as percentages of retail goals and the District of Columbia (all who list requirements in
the DSIRE database [4]). Several statutes discussed in the text are highlighted (IL, NJ, CA, and the
proposed federal standard of HR2454). While the details of implementation can vary from state to
state, with the exception of California the overall targets and phase-in rates are broadly similar. RPS
requirements tend to begin at a low value of a few percent of total generation, increase at a rate of a
percentage point or two per year, and top out at ∼ 20%. The clustering of RPS legislation in 2006-2011
means that the bulk of U.S. renewables requirements reach their peak in 2020-2025.

special conditions or circumstances that differentiate them from more recent statutes.
Iowa, the earliest RPS (1983), had requirements so small (∼ 1% of state electricity sales;
[4, 12]) that they could not be expected to affect the renewables industry significantly.
Maine (2000) allowed existing facilities to contribute to the renewable portfolio and the
RPS was initially met by existing hydropower rather than new construction [6]. Texas
(1999) possesses such anomalously strong wind resources that development of windpower
in the state could be driven largely by the federal Production Tax Credit and Investment
Tax Credits with the state RPS playing a much less significant role. (The Production Tax
Credit and Investment Tax Credits, henceforth “PTC”, reimburse qualifying renewable
generators for up to 30% of the installed cost. See Appendix A.1 for further discussion.)
Current Texas REC prices remain so low (∼ $1 per MWh; [13]) that the state RPS is not
a significant subsidy for windpower in Texas, and current construction implies that Texas
wind capacity will reach its 10 GW target almost fifteen years ahead of RPS-mandated
requirements [14]. Prediction of the expected evolution of renewables implementation
under the 2006-2011 statutes therefore requires new analysis.

3

(b) The extracted text from the paper (top). The highlighted value $1 per MWh refers to the
annotation science object with the tag Texas (bottom)

FIGURE 2.4: The PDFExtractor Tool

RepAudit is a browser plugin for Mozilla Firefox. If enabled by the user before exploring an
online database, RepAudit first determines the primary link of the online database being
explored. If no link can be determined, RepAudit assigns a temporary link which can be
changed later by the author. RepAudit audits user’s links and/or the keywords mentioned in
query forms and maintains a history of the visited links and pages in a SQLite database. This
database is built using the Firefox Places schema, which stores new URls and their pages.
The RepAudit database also stores link traversal history. The history for a downloaded
dataset can be exported as a derived link.

Demonstration: We have experimented with the use of RepAudit for various biochemistry
publications that use data from PubChem. These publications are provided by PubChem
as dataset exemplars. To locate the correct data set as described in the publications, we
worked with biochemistry graduate students at our institution. Here we describe the use of
RepAudit on one of those publications.

The biochemistry paper “Identifying Compound-Target Associations by Combining

14 Dummy title

Bioactivity Profile Similarity Search and Public Databases Mining” [7] provides the fol-
lowing dataset description:

The NCI-60 data set contains anticancer screening results for more than 40,000

compounds. It is publicly available in the PubChem BioAssay database(38) as 73

bioassays with the name of NCI human tumor cell line growth inhibition assay under

the DTP/NCI data source. In this work, only the top 60 bioassays (referred hereafter

as NCI-60) with the largest number of tested compounds were selected (Supporting

Information, Table S1). Relevant bioactivity data were downloaded at the PubChem

FTP site (ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay, accessed on December

9, 2010). A total of 5083 compounds were found commonly tested in all of the 60

bioassays. Additional data set characteristics are summarized in Supporting Infor-

mation.

In collaboration with graduate biology students we searched PubChem for the NCI-60
data set. Even though the description mentions NCI-60 as publicly available from Pub-
Chem site, no assays can be retrieved with the specific search term. However, 195 bioassays
are indeed retrieved from the search term “NCI human tumor cell line growth inhibition
assay” with 75 bioassays corresponding to bioassays under the source DTP/NCI uploaded
earlier than December 9, 2010. There is no way of sorting or filtering the bioassays on the
largest number of tested compounds from the website from both search and advanced search
features. In addition the URL ftp://ftp.ncbi.nlm.nih.gov/pubchem/Bioassay provides
no search interface or a directory of NCI-60 dataset. Thus it is not entirely evident what
specific search terms were used by the authors and the filters applied by them.

In the SOLE demonstration [58] we show the PubChem dataset description tagged with
the browser history of the downloaded dataset. The history is shown in three representations:
(1) as full paths from the beginning of the session to the downloaded dataset in the end, (2)
as distinct paths, and (3) as search terms. The obtained history shows that downloading
a dataset requires significant data retrieval from PubChem and that a simple URL is not
sufficient for obtaining the exact same data.

2.4.3 Workflow Objects

A typical computational paper is a result of several data management and computational
tasks performed independently, such as gathering and preparing input data; configuring;
building and running the model on various computing resources; collecting metadata about
the model; computing environment and input files; post-processing model outputs; and
visualization. The paper mostly describes the end results of these tasks. However, the reader
would like to change one or more parameters or steps of the task to assess the impact on
the result. For a reader, the easiest way to check the workability of the application is when
parameters can be changed through command-lines are interfaces, without having to change
source codes and recompiling the application. However, substituting one or more steps with
another is often more challenging without source code modification.

Workflow systems provide abstractions for designing, composing, and executing applica-
tions with multiple steps such that steps may be conveniently substituted and parameters
easily modified. When the task is supposed to be performed many times, such abstractions
make it easier for the scientist to focus on the logic of their applications instead of the
technical details for accessing and invoking the software components needed for execution,
which can be delegated to the workflow system. Despite the advantages, most domain-
specific workflow systems are often strongly typed necessitating a scientist to abandon their
favorite programming environment.

Galaxy-ES is a workflow system for climate science that allows a scientist to remain with

SOLE: Towards Descriptive and Interactive Publications 15

###i:tiff@reclassification
primary_namefile <- "thumb_2001_lct1.tif"
secondary_namefile <- "thumb_2001_lct1_sec.tif"
pct_namefile <- "thumb_2001_lct1_pct.tif"
###i@

FIGURE 2.5: The tagged source code for workflow inputs (left). The created workflow
object (right). Clicking on the workflow executes the workflow

his or her programming environment but provides support for wrapping their application
with simple, uniform Web interfaces. An application can be executed as multiple steps, while
the system automatically manages the computational details. From these Web interfaces
a reader can change parameters to run an application. Galaxy-ES builds from the Galaxy
system in genomics, which allows experimentalists without informatics or programming ex-
pertise to perform complex large-scale analysis with just a Web browser. Galaxy-ES, similar
to Galaxy, also introduces two other features for reproducible research: (1) it automatically
tracks and manages data provenance and provides support for capturing the context and in-
tent of computational methods, and (2) Galaxy Pages are interactive, web-based documents
that provide users with a medium to communicate a complete computational analysis.

However, to use Galaxy-ES the author still has to provision an instance and build a tool
definition of their application. In particular, to provision and define a tool an author still
has to write three files: (1) a configuration file describing the tool user interface and how the
tool have to be executed including inputs and outputs; (2) a launcher script that prepare
the custom execution environment and redirect output and error streams to a self describing
container; and (3) wrap scripts that perform the dataset staging in, the actual processing
and the dataset staging out. These steps do require familiarity with the internals of the
Galaxy system and the details associated with tool definitions, which may be significant for
an author.

To reduce this gap, we extended the SOLE approach of tagging source codes. Authors
continue to work in their favorite declarative programming language and tag functions in
source codes with the tag definition as described in Section 2.3.2. The tagtype describes
if the tagged portion of the code describes inputs to a function, outputs of a function, or
the function definition. SOLEConnect is a SOLE tool that interprets these tag types and
creates a corresponding Galaxy-ES tool definition, which are then automatically deployed
on a Galaxy instance running on Amazon cloud. SOLEConnect also creates a corresponding
science object of this tool describing metadata elements such as the URL of the tool, its
inputs, outputs and the corresponding language science object. The metadata elements are
uploaded to FluidInfo.

Demonstration: To demonstrate the use of SOLEConnect, we continue with example of
Best et. al. for which we created language objects in Section 2.4.1. The paper describes
a novel synthesis methodology to general a land cover dataset for the conterminous USA
called “PEEL0”. The methodology is a three step process: The first step inputs a dataset; The
second step takes numerical parameters as inputs to execute a model on the datasets, and
the third step aggregates relevant information from datasets, based on the model to generate
a new model with a visualization of the data. In reviewing this methodology, readers are

16 Dummy title

interested in experimenting with different datasets, changing the parameter values in the
second step and/or substituting the model in the second step to see the impact on the
aggregation step.

The three steps of the methodology can individually be described as Galaxy-ES tools but
require effort from the author’s side to wrap them as tools. Instead the steps were tagged
with SOLE tags.The inputs of the first step are tagged as shown in Figure 2.5. SOLEConnect
creates a workflow science object (Figure 2.5), which can be attached with description of the
first step (Figure 2.3b) in the publication. To experiment with the linked workflow science
object in SOLE with input fields that allow a reader to choose different datasets, please see
[59].

2.4.4 Software Package Objects

In some cases readers may find it useful to attach an entire software package with the paper.
CDE is tool that uses system call interposition to automatically create portable software
packages. The primary advantage of using CDE is that creating a package is completely
automatic, and that running programs within a package re-quires no installation, config-
uration, or root permissions. The SOLEPkg tool uses CDE for creating the package, but
wraps the package with user-supplied metadata including a tag. The resulting metadata
annotated software package object is uploaded to the database. The author can attach this
SO to phrases in the text similar to a language object. In Section 2.5 we show how replayable
software packages can be created, which not only help in verification but also help reduce
the time to replay.

2.4.5 Virtual Image Objects

Virtualization software now provides a level of maturity wherein a running instance of a
computer (a virtual machine image (VMI)) with resources, such as memory and central pro-
cessing units (CPUs), can be automatically provisioned to perform computations and data
management tasks. An immediate impact of this advancement in virtualization technology
is on reproducibility of experiments. A scientist can conduct an experiment on a virtual
machine and simply share the image of that machine with the reader. By providing an
authoritative, encapsulated and executable record of computations, virtualization provides
the reader with exactly the same environment as that used by the author.

This use of virtualization has been exploited by many recent projects to enable re-
producibile experiments. Typically, it is a two step process. First, scientific datasets are
stored in the cloud with more researchers having access to the data. Second, the entire
computer system, including the operating system, is copied to the VMI, so that other re-
searchers can fully replicate the in silico experiment. The author states that by providing a
pre-installed, pre-configured virtual machine the original laboratory is provided intact for
future researchers [11].

While a VMI may provide an authoritative and executable record of computations1, the
computation is encapsulated in a machine that is not directly attached with the descriptions
in the paper. It would be useful if there was a general purpose convention for addressing
where one should look to understand what a VMI is about, the experiment that it contains
and how to modify the experiment.

VMIReader is a SOLE tool that uses open-source VirtualBox utility for provisioning an
AWS VMI. The utility creates a Readme file in the user home directory, which the user

1We assume that the image is provisioned on a standard cloud provider. In general guaranteeing exe-
cutability of a VMI is challenging due to differing standards to encode an image.

SOLE: Towards Descriptive and Interactive Publications 17

can use for connecting phrases in the paper with specific paths in the VMI or executables.
The Readme file is synced with the SOLE system and the system stores the tags associated
with the VMI. Due to size constraints the actual VMI is not stored in SOLE but a link
corresponding.

Demonstration: To demonstrate the use of VMIReader in SOLE we revert to the RDCEP
paper on the “Synthesis of a Complete Land Use/Land Cover Dataset for the Conterminous
United States” [3], which consists of PEEL0 an R-program for generating land cover dataset
for the conterminous USA. PEEL0 combines information from multiple sources by estab-
lishing a common classification scheme at lower spatial resolution. Executing PEEL0 would
require specific versions of R and libraries: R v2.15.2, libgdal v1.7.3, raster v2.0.41, rgdal
v0.8.5, ggplot v2.0.9.3, xtable v1.7.0, and doMC v1.2.5.

To share PEEL0, the author can build a software package (with CDE) or build a virtual
image preinstalled with R and the accompanying libraries. The advantage of building a VMI
is that it can also pre-loaded with the MODIS and National Land Cover Database (NLCD)
datasets that were used in the experimentation. However, this VMI is still not does explicitly
map the three steps described in the paper with the source code. We created a SOLE-specific
ReadMe file with the tags “Step1”, “Step 2”, and “Step3”, with each step describing the
command-line specification to run the respective step. This ReadMe file is part of PEEL0
source code directory. Now, when the VMIReader provisions the virtual machine with the
dataset and source code it interprets the SOLE-specific ReadMe file and uploads the tags
and their specification to the SOLE system. The author can attach the tags to the individual
steps mentioned in the paper. The SOLE VMIReader demonstration is available at [60].

2.5 Science Objects for Repeatability Testing

Increasingly conference committee and journal editors are encouraging authors to submit
their code, data, and software for repeatability testing. Repeatability testing improves peer
review by allowing reviewers to: (1) not only read the ideas in the paper, but validate
them by running the accompanying software; (2) run the software for different data and
parameters to check robustness; and (3) determine the limitations and assumptions in the
ideas by testing with more general inputs, or under different conditions and environments.

However, as documented by recent experiments, repeatability testing can be arduous
and time consuming for both authors and testers [28, 13]. Authors have to prepare code,
document it, and make explicit rendering of all dependencies on compilers, operating sys-
tems and hardware. For testers, assessing code and data for repeatability can be challenging
since documentation is rarely complete and perfect. But more so, as experiments become
data and computation intensive, the test- ing time can be significant [53].

Recently tools have emerged that aid authors and testers in making their software and
thus experiments repeatable. CDE helps authors package the code, data, and environment
for Linux programs so that they can be run and deployed on other machines without instal-
lation or configuration [18, 19]. The resulting x86 Linux-based package requires no instal-
lation, configuration, or root permissions. Being open-source, with a user-friendly interface
for packaging and rerunning, CDE has become useful for conducting reproducible research.

While CDE is a step towards simplifying repeat- ability testing for authors, they do
not reduce computation and data processing time for repeatability tests. Testers may want
to repeat only selected portions of an experiment without having to go through the (often
time-consuming) process of repeating the experiment in its entirety. For instance, they

18 Dummy title

ptu-‐audit	

read(conf.dat)

/data/	
conf.dat	

C

op
y

A
pp

lic
at

io
n

Fi
le

s

Provenance	 DB	 	
	 	 	

fork()

/bin/workflow	

/bin/	
reclass	

PTU

/bin/	
calculate	

fork()

 Start workflow and Audit

AUTHOR’s COMPUTER

$PKG_ROOT/
 bin/
 workflow
 reclass
 calculate
 data/
 conf.dat

ptu-‐exec	

PTU Package

Ev
en

ts

(a) ptu-audit builds a pack-
age of provenance events and
copies application files.

/data/	
conf.dat	

/data/	
out.dat	

/bin/	
workflow	

/bin/	
calculate	

/bin/	
filter	

/bin/	
convert	

/bin/	
reclass	

/bin/	
python	

Provenance DB

fork() fork()

fork()

fork()

fork()

read()

write()

fork()

/data/	
in.dat	

read()

$PKG_ROOT/
 bin/
 workflow
 reclass
 calculate
 filter
 convert
 python
 data/
 conf.dat
 in.dat
 out.dat

PTU Package

(b) The PTU package.
The tester chooses to run
the sub-graph rooted at
/bin/calculate.

TESTER’s COMPUTER

PTU

write($PKG_ROOT/data/out.dat)

read($PKG_ROOT/data/in.dat)
$PKG_ROOT/bin/

filter	

Verify, Start calculate and Redirect

$PKG_ROOT/bin/
calculate	

/data/	
conf.dat	

CDE read()

/data/	
out.dat	

ptu-‐audit	 ptu-‐exec	

Provenance	 DB	 	
	 	 	

$PKG_ROOT/
 bin/
 calculate
 filter
 data/
 in.dat
 out.dat

PTU Package

Read Graph

/data/	
in.dat	

(c) ptu-exec re-runs part
of the application from
/bin/calculate. It uses CDE
to re-route file dependencies.

FIGURE 2.6: The Provenance-to-Use (PTU) Tool

may want to avoid running a compute-intensive process that decodes and splits an MPEG-
video, or avoid performing a data-intensive text scan, or avoid network communication or
transfers. Similarly, they may want to reuse cached results. However, such selective execution
of program components is difficult or impossible for the tester, unless appropriate history
and provenance information has been captured in a previous reference run.

Provenance-To-Use (PTU) [43, 50] is a SOLE tool for reducing time for repeatability
testing. Authors can use PTU to accomplish two tasks: (1) build a package of their source
code, data, and environment variables, and (2) store process and file level details about
a reference execution of their system in an accompanying database. A package alleviates
testers from software deployment issues allowing for convenient distribution. Recording a
reference execution path and run- time details within the package eases distribution of this
vital information that can guide testers during the test- ing phase. In particular, testers can
explore the provenance graph and accompanying run-time details to specify the part of the
provenance graph that they want to re-execute or replay: see Figures 2.6a, 2.6b, and 2.6c.

PTU uses CDE [18, 19] to create and run a package. CDE uses the Unix ptrace system call
interposition to collect code, data files, and environment variables. The ptrace mechanism
also allows for auditing file and process information, which can be transformed for storing
a provenance graph, independent of the application [34]. In PTU, we enhance CDE’s use
of ptrace to store a provenance graph representing a reference run-time execution at the
process and file level. We describe how PTU can be used by authors and testers.

Authors use PTU to create a self-contained package with a reference execution by prepend-
ing the application command with the ptu-audit tool as in the following example, which
involves the Java application TextAnalyzer applied to a file news.txt :

ptu-audit java TextAnalyzer news.txt

The ptu-audit tool uses ptrace to monitor 50 system calls including process system
calls, such as execve(), sys fork(); file system calls, such as read(), write(), sys io() for
collecting file provenance; and network calls, such as bind(), connect(), socket(), and send()
for auditing network activity. Whenever system calls occur, PTU notes the identifier of the
process that made the system call to extract more information about the process from the
Linux /proc file system. In particular, the following information is obtained: processs name,
owner, group, parent, host, creation time, command line, environment variables, and a file’s
name, path, host, size, and modification time. A separate thread is used to obtain memory
footprint, CPU consumption, and I/Os of the process from /proc/$pid/stat every three
seconds.

SOLE: Towards Descriptive and Interactive Publications 19

In the case of distributed applications involving multiple compute nodes, network ac-
tivity is audited independently at each node using ptrace, i.e., without coordination with
the other node. Since network system calls are blocked during auditing, the process record
is always present and the information extracted will be current and accurate. Provenance
information about processes and files is stored in the form of an Open Provenance Model
(OPM) [31] compliant provenance graph in a SQLite database. Currently, PTUs provenance
collector makes two assumptions. First, only network connection information is audited and
no network dumps are made. Thus, while a tester can replay a computation between ex-
actly the same set of hosts they cannot do so without conducting network communication.
Second, PTU does not audit non-deterministic functions such as ctime() and random(). Re-
laxing these assumptions to build a general, distributed audit system is part of our ongoing
work.

When a system call (file or network) returns, and if a new file or network does not
exist, PTU emulates CDE functionality. In the case of a file, it copies the accessed file into a
package directory that consists of all sub-directories and symbolic links to the original files
location. In the case of network communication, it saves a log of the network connection
information, including IP and port information, ordered by time. The package directory
also contains the SQLite database that stores the provenance information of the test run.

When the entire reference run finishes, PTU builds a reference execution file consisting of
the topological sort of the provenance graph. The nodes of the graph enumerate run-time
details, such as process memory consumption, and file sizes. The tester, as described next,
can utilize the database and the graph for efficient re-execution.

Testers can examine the provenance graph contained in a package to study the accom-
panying reference execution. This graph can be viewed at the granularity of processes and
files, and can aid the tester in visually determining parts of the program that they wish to
re-execute. For processes, an accompanying bar graph shows CPU and memory consump-
tion. A tester can then request a re-execution, either by specifying nodes in the provenance
graph or by modifying a run configuration file that is included in the package. The configu-
ration file initially specifies the provenance graph, corresponding to the reference execution,
ordered topologically. A tester can turn flags on or off for each process and file in the prove-
nance graph, to specify if the process needs to be run or if the file needs to be re-generated,
respectively.

To re-run the package, testers prepend the program command with a ptu-exec tool as
follows:

ptu-exec java TextAnalyzer news.txt

The ptu-exec reads the provenance graph/run configuration file, and determines if any
additional process needs to be run or files must be re-generated. A re-run of a process or a
regeneration of a file is mandatory if: (1) A process/file is in the descendent sub-graph of
another process that is marked for re-running; (2) A process/file is in the ancestor sub-graph
of another file that is marked for regeneration; or Re-running these additional processes and
regenerating the files is necessary to maintain consistency of the provenance that will be
obtained from the test run.

To re-execute, ptu-exec obtains run configuration and environment variables for each
process from the SQLite database. To re-execute a process, ptu-exec again monitors it
via ptrace and re-executes CDE functionality of replacing path argument(s) to refer to the
corresponding path within the package cde-package/cde-root/. By doing so, cde-exec creates
a chroot-like sandbox that tricks the target program into believing that it is executing on

20 Dummy title

the original machine [18]. The following are two of the several ptu-exec command-line
options that allow testers to control testing.
-time -t1 <t1> -t2 <t2> implies the tester can re-execute everything between t1 and t2. If
t1 is null or t2 is null execution is done from beginning to t2 or t1 till end. With this option
the run configuration file need not be modified.
-input <p> <f1> <f2> allows user to specify input f1 instead of f2 for process specified
with process id <p>. This helps user test the workability of the system.

A key distinguishing characteristic of our approach is that it can provide fast re-execution
and correct output even when no workflow definition or management system is in place.
PTU does not force testers to keep mental track of processes that were run, while allowing
them to use simple command-line options. Our design does assume that provenance meta-
data is complete and does not omit, alter, or create false provenance events, and is stored
persistently.

Demonstration: To test PTU we took two papers [3, 35] in which authors shared data, tools
and software. We constructed meaningful testing scenarios and determined if PTU provides
any performance improvements. The first paper is again Best et. al. that describes the
synthesis methodology to generate a new landcover dataset for the conterminous USA called
PEEL0. The methodology is implemented as an R-program and combines information from
multiple sources by establishing a common classification scheme at lower spatial resolution.
This is a three step workflow process, in which the second step is to execute a model which
inputs among other parameters a classification scheme. This step is memory-intensive and
a typical run takes close to a GB of real memory. To reduce memory consumption, testers
may want to further lower the spatial resolution by specifying even fewer input files and a
simpler classification model.

Our second program is a text analysis program that mines newspaper articles obtained
freely via the Internet to ask questions about water management issues. The program is
based on the Java-based Unstructured Information Management Architecture (UIMA) and
runs a named-entity recognition analysis program using several data dictionaries. The pro-
cess splits the input file into multiple input files and runs a parallel analysis on all input
files. The tester may want to rerun the program on one input split, but with higher con-
vergence criteria to manually verify the correctness of the program. Note that in general
testing these programs will require R and UIMA to be installed, but by using CDE, testers
are able to test without any pre-requirements.

The graphs generated at the process and file level in both programs are big. PEEL0
generates a provenance graph with 5 process nodes, and 10000 exclusive file reads based on
the number of files in the dataset, and 422 exclusive file writes for the aggregated dataset.
In TextAnalyzer, a single run of the job generates a provenance graph of 8 process nodes,
total conducting 616 exclusive file reads, 124 exclusive file writes, and 50 file nodes that
are read and written again. To improve the readability of these graphs, a single process
view is shown that shows just the subgraph corresponding to that process–the files that it
reads and the files that it writes. The tester notes the process identifiers of the start process
for replay which in case of both PEEL0 and TextAnalyzer continues to remain as the first
process. The tester also writes a configuration file in which different inputs are specified
for selected processes: in the case of PEEL0 input to the first process is a changed directory
location pointing to the new set of files, and for the second process it is the location of
the file specifying a simplified classification scheme; in the case of TextAnalyzer it is set
of process identifiers to reexecute with a different parameter value. The provenance graphs
and the configuration files for the programs can be viewed at [49, 48].

Figure 2.7a show the performance improvements of using PTU with PEEL0, and Figure
2.7b show the performance improvement of using PTU with TextAnalyzer. The most im-

SOLE: Towards Descriptive and Interactive Publications 21

0	

200	

400	

600	

800	

1000	

1200	

MODIS	 LANDSAT	

Ru
n4

m
e	
(S
ec
on

ds
)	 3-‐step	 workflow	 with	

7	 classifica4ons	

3-‐step	 workflow	
replayed	 in	 PTU	 with	
1	 classifica4on	

(a) Time reduction in testing PEEL0 us-
ing PTU

72.035	

28.902	

2.844	

87.41	

32.505	

13.408	

1.773	 0.529	 0.1	
0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

Real	 1me	 User	 1me	 System	 1me	

Ru
n1

m
e	
(s
ec
on

ds
)	

No	 Monitoring	

PTU	 audited	 for	 provenance	 &	
package	
Replay	 with	 lower	 convergence	
criteria	

(b) Time reduction in testing TextAna-
lyzer using PTU

FIGURE 2.7: Using PTU to reduce time for repeatability

portant statistic is the slow down in running the process during a test execution at about
35% for PEEL0 and about 15% for TextAnalyzer. This slowdown is due to additional system
call tracing, with many file system calls traced for PEEL0. Both these times are easily offset
during the re-execution phase. TextAnalyzer has a significant improvement (>98%) since
the entire process is run on a much smaller file.

2.6 Discussion

Research ideas are often non-trivial and complex. Evaluating a non-trivial idea completely is
often beyond the time budget of any single paper as this requires running many benchmarks,
models, competing solutions. Consequently research publications explore novel ideas but
without the associated rigor of experimentation. Given increased competition in research
fields, we believe that lack of rigor will continue to persist creating an author-reader divide
where an author presents a biased evaluation but a reader cannot completely verify the
merit of the idea.

In SOLE we have aimed to minimize this divide by creating a layer of tools and in-
terfaces which allows authors to share their computational artifacts and readers to verify
them through interfaces. For the greater part, the system does assume that authors and
readers have the necessary time and incentives to share and verify. Repeatability testing for
conferences presents an interesting case in this dimension where authors and readers have
sufficient incentives through the conference system, but limited time to share and verify. We
believe the both SOLE tools and PTU are important research contributions in that direction
although for lack of measures it is difficult to quantify the cost of reproducibility.

The cost of reproducibility also raises the question of which papers to reproduce. In SOLE

we have assumed that this is decided by a mutual consensus between co-authors and readers.
In general, aggregating a universal consensus on publications that must be reproduced is
hard. However, we do believe that funding agencies can play a pivotal role in this decision
since they are the primary sponsors of the research and also a proxy for the interests of the
general public.

In SOLE we have assumed that papers to be reproduced are published in open-access
journals such that there are no copyright issues. This assumption does not apply to a large
body of scientific work, which is published in copyrighted journals. Such journals, prior

22 Dummy title

to publishing, require the authors to relinquish their ownership rights to articles, includ-
ing copyright [61]. Thus authors have minimal say in access of the publication and how to
disseminate its content. By increasing awareness about the importance of reproducible com-
putational research [68], and proposing newer standards such as the Reproducible Research
Standard [61], this trend seems to be changing now, with some journals, such as Nature [37]
and Biostatistics [5] beginning to require that code or data be released as a precondition
for publication.

In SOLE our focus has been towards a general approach to reproducibility. However,
making a publication reproducible has indeed required us to understand concepts in climate
science and biochemistry. Minimizing the involvement of the human-in-the-loop is one of
our goals. We believe that we will have a better understanding of this challenging problem
as publications, software, and tools from other disciplines become accessible to use and we
use SOLE tools to make them reproducible.

2.7 Conclusion

Static text-based publications summarize and market the ideas of their authors , but do
not provide access to the basis for those ideas, which are embedded in a collection of data
and computational methods. Many scientific communities use the Web to share data and
software packages. However, such Web resources remain largely disconnected from the claims
made in papers. Readers and reviewers who want to reuse data and methods, assess the
validity of findings, and verify results cannot do so. In this chapter, we have introduced
and described SOLE, a a framework for creating descriptive and interactive publications by
linking them with the associated science objects. We described a suite of tools, namely the
extended Ctags, PDFExtractor, RepAudit, SOLEConnect, and VMIReader that assist the
author to create science objects for source codes, datasets and online databases, workflows,
and virtual machine images. By hosting them on an online database allows both authors and
readers to interactively fetch metadata description about the objects and link them with
research papers for the purpose of assessment, repeatability, and verification of research. We
believe SOLE is a step toward a collaborative environment that engages authors and readers
towards reproducible research.

2.8 Acknowledgements

We thank Neil Best for the insightful discussions on conducting reproducible research. We
thank David Blair for help with PubChem repository. This work was supported in part by
the Center for Robust Decision making on Climate and Energy Policy, under NSF grant
number 0951576. The work was performed by contractors of the US Government under
contract number DE-AC02-06CH11357.

Bibliography

[1] I. Altintas, O. Barney, and E. Jaeger-Frank. Provenance collection support in the
Kepler scientific workflow system. Provenance and annotation of data, pages 118–132,
2006.

[2] T. Attwood, D. Kell, P. McDermott, J. Marsh, S. Pettifer, and D. Thorne. Utopia doc-
uments: Linking Scholarly Literature with Research Data. Bioinformatics, 26(18):568–
574, 2010.

[3] N. Best, J. Elliott, and I. Foster. Synthesis of a Complete Land Use/Land Cover
Dataset for the Conterminous United States. SSRN eLibrary, 2012.

[4] BioMed Central. http://www.biomedcentral.com/.

[5] Biostatistics editorial. http://biostatistics.oxfordjournals.org/content/10/3/
405.full.pdf+html.

[6] Y. Cai, K. Judd, and T. Lontzek. Shape-preserving dynamic programming. Mathe-
matical Methods of Operations Research, 2012.

[7] T. Cheng, Q. Li, Y. Wang, and S. Bryant. Identifying compound-target associations by
combining bioactivity profile similarity search and public databases mining. Journal
of Chemical Information and Modeling, 51(9):2440–2448, 2011.

[8] Ctags. http://ctags.sourceforge.net/ctags.html.

[9] DeXY. http://www.dexy.it/.

[10] D. Donoho, A. Maleki, I. Rahman, M. Shahram, and V. Stodden. Reproducible Re-
search in Computational Harmonic Analysis. Computing in Science & Engineering,
11(1):8–18, 2009.

[11] J. Dudley and A. Butte. In silico research in the era of cloud computing. Nature
Biotechnology, pages 1181–1185, 2010.

[12] FluidInfo. http://fluidinfo.com/.

[13] J. Freire, P. Bonnet, and D. Shasha. Computational reproducibility: state-of-the-art,
challenges, and database research opportunities. In Proceedings of the 2012 interna-
tional conference on Management of Data, pages 593–596, 2012.

[14] M. Gavish and D. Donoho. A Universal Identifier for Computational Results. Procedia
Computer Science, 4, 2011.

[15] Giga Science. http://www.gigasciencejournal.com/.

[16] C. Goble and D. De Roure. myExperiment: social networking for workflow-using e-
scientists. In Proceedings of the 2nd Workshop on Workflows in support of Large-scale
Science, pages 1–2. ACM, 2007.

23

24 Dummy title

[17] J. Goecks, A. Nekrutenko, J. Taylor, and The Galaxy Team. Galaxy: A comprehen-
sive approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol, 11(8):R86, 2010.

[18] P. Guo. CDE: Run any Linux application on-demand without installation. In Proceed-
ings of the 2011 USENIX Large Installation System Administration Conference, LISA
’11. USENIX Association, 2011.

[19] P. Guo and E. Dawson. CDE: Using system call interposition to automatically create
portable software packages. In Proceedings of the 2011 USENIX Annual Technical
Conference (short paper), USENIX ’11. USENIX Association, 2011.

[20] S. Johnson and E. Moyer. Feasibility of U.S. Renewable Portfolio Standards Under
Cost Caps and Case Study for Illinois. SSRN eLibrary, 2012.

[21] G. Klimeck, M. McLennan, S. Brophy, G. Adams, and M. Lundstrom. NanoHUB.org:
Advancing Education and Research in Nanotechnology. Computing in Science & En-
gineering, 10(5):17–23, 2008.

[22] D. Knuth. Literate Programming. The Computer Journal, 27, 1984.

[23] D. Koop, E. Santos, P. Mates, H. Vo, P. Bonnet, B. Bauer, B. Surer, M. Troyer,
D. Williams, J. Tohline, J. Freire, and C Silva. A Provenance-Based Infrastructure to
Support the Life Cycle of Executable Papers. Procedia Computer Science, 4(0), 2011.

[24] C. Lagoze and H. Van de Sompel. The Open Archives Initiative: Building a Low-barrier
Interoperability Framework. In Proceedings of the 1st ACM/IEEE-CS joint conference
on Digital libraries, pages 54–62, 2001.

[25] C. Lagoze and H. Van de Sompel. The Making of the Open Archives Initiative Protocol
for Metadata Harvesting. Library Hi Tech, 21(2):118–128, 2003.

[26] F. Leisch. Dynamic Generation of Statistical Reports Using Literate Data Analysis.
In Proceedings of Computational Statistics, 2002.

[27] F. Leisch. Sweave, Part I: Mixing R and LaTeX. R News, 2(3):28–31, 2002.

[28] S. Manegold, I. Manolescu, L. Afanasiev, J. Feng, G. Gou, M. Hadjieleftheriou, S. Hari-
zopoulos, P. Kalnis, K. Karanasos, D. Laurent, et al. Repeatability & workability
evaluation of SIGMOD 2009. ACM SIGMOD Record, 38(3):40–43, 2010.

[29] I. Manolescu, L. Afanasiev, A. Arion, J. Dittrich, S. Manegold, N. Polyzotis, K. Schnait-
ter, P. Senellart, S. Zoupanos, and D. Shasha. The repeatability experiment of SIG-
MOD 2008. ACM SIGMOD Record, 37(1):39–45, 2008.

[30] J. Mesirov. Accessible Reproducible Research. Science, 327(5964):415–416, 2010.

[31] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Natalia
Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, et al. The Open Provenance
Model Core Specification (v1. 1). Future Generation Computer Systems, 27(6):743–756,
2011.

[32] A. Morin, J. Urban, P. D. Adams, I. Foster, A. Sali, D. Baker, and P. Sliz. Shining
light into black boxes. Science, 336(6078):159–160, 2012.

[33] W. Muller, I. Rojas, A. Eberhart, P. Hasse, and M. Schmidt. ARE: The Author-
Review-Execute Environment. Procedia Computer Science, 4(0), 2011.

Bibliography 25

[34] K. Muniswamy-Reddy, D. Holland, U. Braun, and M. Seltzer. Provenance-aware stor-
age systems. In USENIX Annual Technical Conference, 2006.

[35] J. Murhy, J. Ozik, and M. Altaweel. Textual Hydraulics: Mining Online Newspapers to
Detect Physical, Social, and Institutional Water Management Infrastructure. Technical
report, Argonne National Lab, 2013.

[36] P. Murray-Rust, C. Neylon, R. Pollock, and J. Wilbanks. Panton Principles, Principles
for Open Data in Science, 2010.

[37] Nature Editorial Policies. www.nature.com/authors/editorial_policies/

availability.html.

[38] P. Nowakowski, E. Ciepiela, D. Harezlak, J. Kocot, M. Kasztelnik, and et. al. The
Collage Authoring Environment. Procedia Computer Science, 4(0), 2011.

[39] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. Pocock, A. Wipat, et al. Taverna: a tool for the composition and
enactment of bioinformatics workflows. Bioinformatics, 20(17):3045–3054, 2004.

[40] Open Access. http://en.wikipedia.org/wiki/Open_access.

[41] Open Data. http://en.wikipedia.org/wiki/Open_data.

[42] Open Source. http://en.wikipedia.org/wiki/Open_source.

[43] Q. Pham, T. Malik, and I. Foster. Using Provenance for Repeatability. In Proceedings
of the 5th USENIX Workshop on Theory and Practice of Provenance, 2012.

[44] Q. Pham, T. Malik, I. Foster, R. de Niro, and Montella R. SOLE: Linking Research
Papers with Science Objects –Demonstration. In Proceedings of the 4th International
Workshop on Provenance and Annotation, 2011.

[45] PLOS One. http://www.plosone.org.

[46] PubChem Publications. http://pubchem.ncbi.nlm.nih.gov/publications.html.

[47] Poppler. http://poppler.freedesktop.org/.

[48] PTU: TextAnalyzer Demonstration. http://ci.uchicago.edu/SOLE/

Demonstrations.

[49] PTU: PEEL0 Demonstration. http://ci.uchicago.edu/SOLE/Demonstrations.

[50] Provenance-to-use (PTU). http://ci.uchicago.edu/PTU.

[51] N. Ramsey. Literate Programming Simplified. Software, IEEE, 11(5):97–105, 1994.

[52] RunMyCode. http://www.runmycode.org.

[53] D. Sasha. Repeatability & Workability for the Software Community: Challenges, Ex-
periences, and the Future. http://www.cs.utah.edu/~eeide/archive10/slides/

shasha.pdf.

[54] L. Soldatova and R. King. An ontology of scientific experiments. J. of the Royal
Society, Interface / the Royal Society,, 3(11), 2006.

[55] SOLE: Science Object Linking and Embedding. http://ci.uchicago.edu/SOLE.

26 Dummy title

[56] SOLE: Language Science Object Demonstration. http://ci.uchicago.edu/SOLE/

Demonstrations.

[57] SOLE: Data Science Object Demonstration for PDFs. http://ci.uchicago.edu/

SOLE/Demonstrations.

[58] SOLE: Data Science Object Demonstration for Online Databases. http://ci.

uchicago.edu/SOLE/Demonstrations.

[59] SOLE: Workflow Science Object Demonstration. http://ci.uchicago.edu/SOLE/

Demonstrations.

[60] SOLE: Virtual Image Science Object Demonstration. http://ci.uchicago.edu/

SOLE/Demonstrations.

[61] V. Stodden. The Legal Framework for Reproducible Scientific Research: Licensing and
Copyright. Computing in Science & Engineering, 11(1):35–40, 2009.

[62] V. Stodden, C. Hurlin, and C. Perignon. RunMyCode.Org: A Novel Dissemination
and Collaboration Platform for Executing Published Computational Results. In IEEE
eScience Second Workshop on Analyzing and Improving Collaborative eScience with
Social Networks (eSoN), 2012.

[63] The Center for Robust Decision making on Climate and Energy Policy (RDCEP).
http://www.rdcep.org/.

[64] The PubChem Project. http://pubchem.ncbi.nlm.nih.gov//.

[65] H. Thimbleby. Experiences of Literate Programming Using Cweb (A Variant of Knuth’s
WEB). The Computer Journal, 29(3):201–211, 1986.

[66] P. Van Gorpa and S. Mazanekb. SHARE: a web portal for creating and sharing exe-
cutable research papers. Procedia Computer Science, 4, 2011.

[67] P. Whetzel, H. Parkinson, H. Causton, and et al. The MGED ontology: a resource for
semantics-based description of microarray experiments. Bioinformatics, 22(7), 2006.

[68] Reproducible Research: Tools and Strategies for Scientific Computing. http://www.

stodden.net/AMP2011/.

[69] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. Von Laszewski, V. Nefedova, I. Raicu,
T. Stef-Praun, and M. Wilde. Swift: Fast, reliable, loosely coupled parallel computation.
In IEEE Congress on Services, pages 199–206. IEEE, 2007.

