
SciInc: A Container Runtime for Incremental
Recomputation

Andrew Youngdahl, Dai Hai Ton That, Tanu Malik
School of Computing

DePaul University, Chicago, IL, USA
Email: {ayoungdahl, dtonthat, tanu}@depaul.edu

Abstract—The conduct of reproducible science improves when
computations are portable and verifiable. A container runtime
provides an isolated environment for running computations and
thus is useful for porting applications on new machines. Current
container engines, such as LXC and Docker, however, do not
track provenance, which is essential for verifying computations.
In this paper, we present SciInc, a container runtime that tracks
the provenance of computations during container creation. We
show how container engines can use audited provenance data for
efficient container replay. SciInc observes inputs to computations,
and, if they change, propagates the changes, re-using partially
memoized computations and data that are identical across replay
and original run. We chose light-weight data structures for stor-
ing the provenance trace to maintain the invariant of shareable
and portable container runtime. To determine the effectiveness
of change propagation and memoization, we compared popular
container technology and incremental recomputation methods
using published data analysis experiments.

I. INTRODUCTION

Containerization methods are becoming vital for conduct-
ing reproducible science. Container engines, such as Linux
Containers (LXC) [1] and Docker [2], use capabilities in the
Linux kernel to sandbox a computation and its dependencies in
a host machine. The container engine then re-runs the sandbox
in isolation on target machines without the target environment
interfering with the computation. Container engines provide
user-friendly methods to create, share, and deploy containers,
thus contributing to the conduct of reproducible science [3].

Using a container engine to port a computation on a new
machine, however, is only the first step toward conduct of re-
producible science. To establish reproducibility, in most cases,
the ported computation is repeated at least once, but often
repeated several times possibly by changing input parameters
and arguments. A container runtime isolates each repetition;
however it does not verify if results of repeated computations
match (or do not match) with results obtained from original
execution of the computation on the host machine.

Application provenance can verify if repeated results match
(or do not match) and thus aid in reproducible execution.
Current container engines, however, do not audit provenance
of computations. System call auditing methods such as ptrace,
Linux audit, and logging tools can audit provenance in con-
tainers, similar to their traditional use for auditing provenance
in operating systems [4], [5]. But their naive use increases
container creation time. Further, current container runtimes are
oblivious of provenance data—they do not distinguish between

audited provenance obtained from host versus target machine
making it difficult to verify reproducible execution.

In this paper, we audit provenance during container creation
using auditing mechanisms such as ptrace, but restrict the
amount of auditing in order not to increase container creation
time. We include the audited provenance within a container
runtime to verify and optimize further container runs. In
particular, the container runtime uses audited provenance to
optimize iterative runs, especially as input arguments and
parameters change. The container runtime, termed SciInc,
strictly maintains isolation guarantees, and improves the ef-
ficiency of reproducing computations within a container. We
make the following contributions in developing SciInc:

Auditing Provenance in Containers. We describe an al-
gorithm for generating provenance using system call events
audited during container creation. Events audited during con-
tainer creation are a subset of the events audited in general
within an operating system. The resulting provenance is min-
imal and is represented as a data dependency trace at the
granularity of file and processes. The trace consists of both
causal dependencies, which arise because of data flow, and
version dependencies, which arise if previously used data is
repeatedly modified.

Performing Incremental Recomputation Using Prove-
nance Trace. SciInc uses audited provenance to improve
efficiency of container replay, especially as input arguments
change. We describe a change propagation algorithm that
selectively re-executes (and re-records) only those versions
of processes or files dependent upon changed input. During
the repeat step, versions whose input dependencies have not
changed are not re-executed; Instead, previous computation
results are retrieved from memoization.

Storing Process and File Versions. We create process
versions (aka checkpoints) and file versions in minimal space
for a container. Our primary contributions are (i) determining
the necessary and sufficient versions as determined by the
data dependency graph, and (ii) using userspace techniques
to checkpoint and version. We present a provenance-aware
checkpoint/restore and a de-duplication layer in userspace
based on basic kernel capabilities.

Prototype Implementation. We present a prototype imple-
mentation of the container runtime. The runtime is easily de-
ployable within existing container technology such as Docker
and within emerging containers for the conduct of reproducible

science such as Sciunit [6], [7] and ReproZip [8]. Our runtime
is application and programming language agnostic and does
not alter or restrict the container environment.

We organize the rest of this paper as follows: Section II
presents some background knowledge and assumptions. Sec-
tion III describes the need for creating versioned data de-
pendency traces for re-execution. Section IV describes how
to generate a versioned data dependency trace by observing
file use in processes. Section V describes how to maintain
memoized versions of files and processes. Section VI presents
our experiments showing the minimal overheads using the
algorithm. Section VII describes related work. We conclude
with a discussion and future work in Section VIII.

II. BACKGROUND

We provide some background and state some assumptions.
Host and target environment: A host environment refers to
the environment (dependencies, configuration, shell settings,
etc.) of the machine where a user executes their experiment.
A target environment refers to the environment (dependencies,
configuration, shell settings, etc.) of the machine where a
user intends to run their experiment, primarily for establishing
reproducibility of an experiment.
Deterministic experiment: A deterministic experiment consists
of computations, data and environment (collectively termed
computational artifacts), which when repeated at different
points in time, on nominally equal hardware configurations,
leads to similar results. The discussion in this paper is limited
to deterministic non-distributed experiments.
Experimental results: Results of a deterministic experiment are
either performance-based or analysis-based. In performance-
based results, the hardware configuration is an implicit input
to the computation, and the result depends upon the state of
the hardware. Analysis-based results produce the same value
on each run. Analysis results can still be non-deterministic
and involve memory allocations or pseudo-random number
generation, but we assume such virtual memory allocations
and seeds is tracked and on repetition uses the same values.
Container creation: SciInc assumes a container engine that
encapsulates computational artifacts of deterministic experi-
ments to create a container image. Container engines internally
use system calls in the Linux kernel to maintain environ-
ment isolation of artifacts. The details of these methods is
out of scope of this paper, but we describe the necessary
user-interaction with the engine required to create container
images1. In particular, container engines [2], [9] differ in the
amount of specification required to create a container image.
In this paper, we assume minimal specification in that the
user provides only the specification for running an application,
which includes the entry program and all input arguments. The
container engine determines all the necessary dependencies
associated with the application. The engine copies the files
into a virtual file system that remains isolated from the target
environment on which the container reruns.

1We refer to container images and containers as the same

Container replay: A container replay refers to repeating a
given deterministic experiment with the exact same inputs
under the isolation guarantee. Thus an analysis experiment in a
container will lead to exactly same results if the computation
is executed with the same parametric inputs. If a container
runtime determines the experiment is deterministic in which
the inputs have not changed, the runtime need not re-execute
the experiment. Incremental replay or computation refers to
container replay under changed input arguments. If some
inputs are the same as previous ones, incremental computation
may exclude identical sub-computations, and instead, reuse
any transient outputs. For container replay, we assume the user
only specifies changed input arguments.

III. THE SCIINC

SciInc tracks provenance of deterministic experiments
during container creation. There are two concerns for tracking
provenance during container creation: First how to track data
and control flow events within a container engine. Second, the
granularity at which provenance should be tracked. Finer gran-
ularity (at system call level) improves efficiency of container
replay but increases audit overhead. Since we assume minimal
user specification, a provenance audit mechanism monitors
experiment execution in terms of system calls that were made
by the container engine. But we reduce the granularity of
tracking by restricting to a few system calls. In particular,
only three calls are audited, the system call for opening a file
(read/write), the system call for closing a file (read/write), the
system call for spawning (fork/exec) a process.

Based on this minimal specification and tracking, we model
the execution of a deterministic experiment as a dependency
graph representing control and data dependencies in the exe-
cution. The nodes of the graph consist of vertices representing
files and processes. Edges represent control events, such as a
process opens a file for reading or opens a file for writing, or a
process spawns another process. We also records time duration
for events such as files reads and writes in delta intervals, but
process spawns are recorded as instantaneous.

Figure 1 shows an example of graph. The deterministic
experiment comprises processes P , Q, and R with input files
A, C, and D, and file B as the result of the computation. The
figure also shows edge control events recording interactions
of a process with files along with a timestamp. For instance,
process P reads file A from T1 to T2, and P spawns R at
time T10.

The recorded provenance is minimal given the three system
call events. But is not efficient for container replay. Consider
the following scenario in which container is replayed with
changed inputs:

• Inputs A and D remain the same, but the user changes C
to C ′. Typically, if a change in input re-executes the entire
computation. However, timestamps show that no other
graph vertex causally depends on C. If P is versioned at
the time C is first opened and read, then SciInc can
use that version of P to recompute with C ′.

Fig. 1: Audited provenance must be verisoned for efficient container replay (Graphs are presented with W3C PROV-DM [10]).

• Input A and C remain the same, but the user changes D
to D′. Again if an input changes, the entire computation is
re-executed. However, D is only causal to Q so partially
re-executing Q along with its other inputs should be
sufficient. However, Qs other input B has changed since
Q used it. Thus SciInc either includes Bs lineage
(nodes A, C, P , and B), or the version of B read by
Q.

Intuitively the scenarios show a process which previously
opened a file for writing and closed must be versioned if it
reads a new file; thus if the new file changes we can simply
recompute from the newer version of the process. Similarly,
if a process uses a file before overwriting, the file must be
versioned, so that recomputation can use the new version.

The examples above show that an execution trace of a
computation consisting of causal dependencies is not sufficient
to provide a maximum advantage of incremental recompu-
tation. Process versions and file versions, if appropriately
created, improve the efficiency of incremental recomputation.
The problem is to determine which nodes must be versioned.
Indeed verticies that have been part of a previous causal
dependency must be versioned. Thus historical tracking of
vertex participation in an information flow is necessary. Such
information flow must restrict to a minimum the number of
events necessary to record the execution of the computation
in an application-agnostic way.

We next present an algorithm to create in real-time a
dependence graph consisting of both causal and version depen-
dencies based on minimal application events. We then show
how to use this dependency graph for container replay with
changing inputs.

IV. VERSIONED PROVENANCE GRAPH

A. Definitions

We present an algorithm to construct a versioned prove-
nance graph, as shown in Figure 1(b), based on a minimal
sequence of system call events used to capture the interaction
between processes and files.

For the rest of this paper, we consider a provenance
graph G = {V,E} composed of a set of vertices V =
{Activitiy(VA), Entity(VE)} and a set of edges E = {e =
(u, v) | u 6= v;u ∈ V ∧ v ∈ V }. Following the W3C PROV-
DM [10], there are two types of vertices: activity vertices,
which represent processes, and entity vertices, which represent
files in a provenance graph. In our graphs, we use a rectangle
to represent an activity and an eclipse to represent an entity.

When an event n occurs, the algorithm establishes an edge
e = (u, v) between the vertices. Events are open and close
of files for reading and writing and process spawns. An event
n labels an edge with a W3C type, such as wasGeneratedBy,
used, wasDerivedFrom, and wasInformedBy, and informs its
direction. An event also associates a time interval to the edge
defined as:

Definition 1. Association Time Interval. Association time
interval Te = [t1, t2] of an edge e = {u, v} in a provenance
graph G is an interval of time [t1, t2] when n occurs (t1 ≤ t2).

As an example, consider Figure 1(a) where a process P
opens a file A for reading. The association time interval
T = [1, 2] of the edge between P and A shows that the
process P opens file A to read at time t = 1 and closes
file A at t = 2. Similarly, process P spawns Q at time t = 5,
thus, the association time interval is T = [5, 5]. Note that even
though process Q runs from t = 5 to t = 9, the association
time interval between P and Q is only [5, 5], since we assume
the direct relationship between these two processes occurs
instantaneously at [5, 5].

It is possible to use association time intervals to form a
relation of causal dependence between file or process vertices.

Definition 2. Causal Dependence. Given a provenance graph
G, a vertex VA is causally dependent upon vertex VB iff:

• ∃e : e ∈ E, e = (VA, VB), or
• ∃Path : Path = {e ∈ E : e1...en}, {v ∈ V : v1...vn+1},
∀i : 2 ≤ i ≤ n, VA = v1, VB = vn+1,
ei−1 = (vi−1, vi), ei = (vi, vi+1),
eEnd
i−1 > eStart

i

The Definition 2 shows that VA causally depends upon VB if
there is a connected path from VA to VB where either the path
comprises one edge, or each vertex along the path connects
edges such that an incoming edges end time is greater than
or equal to an outgoing edges start time. As in Figure 1, this
dependence is contingent upon a time interval in which the
two vertices form an association. For example, in Figure 1(a)
vertex Q causally depends on vertex A. There is a path (e1 =
{Q,P} and e2 = {P,A}) between Q and A. When traversing
from Q to A the end time of e1 is 5 which is greater than
e2’s end time of 2. Conversely, Q is not causally dependent
upon C. There is a path (e1 = {Q,P}, e2 = {P,C}) which
connects Q to C, however the end time of e1 (5) is less than
the end time (14) of edge e2.

The existence of non-causal paths, such as between Q and
C in Figure 1(a) indicates need for versioning. We now define
a version vertex.

Definition 3. Version vertex. Given a provenance graph G, a
version of vertex v is a vertex v′, which must be added to G
such that any path through v has a valid causal dependency.

• u,w ∈ V, u 6= v, e1, e2 ∈ E, e1 = (u, v)∧ e2 = (v, w)→
e1, e2 form a causally dependant path.

By definition, a version vertex creates a version edge
between v and v′. For example, in Figure 1(b) process P and
file B have been represented with distinct version vertices; P1,
P2 and B1, B2 respectively. A dependent path from Q to C
and from Q to R in Figure 1(a) no longer exists in Figure 1(b).
Representing the execution as a version graph renders the
association time intervals superfluous; causal dependencies can
be identified through a simple traversal of the graph without
regard to the association time intervals so long as the invariant
that all vertices in the graph are version vertices is maintained.

Given an event and time intervals on all edges, identifying if
a vertex needs to be versioned is straightforward: those vertices
are versioned if there exists an incoming edge that has an
end-time less than the start time of any edge on the outgoing
path. In other words, if an event creates a new information
flow to a vertex which already has information flowing to
its descendants, then snapshot the descendants including the
vertex as versions, and create new causal dependency from the
incoming edge to all new descendant versions.

If the version graphs are being constructed in real-time
many edges will not have an end-time. For example, if a
process opens a file to read but has not closed the file then
there is no end time. Interestingly to create versions, the graph
need not store explicit end-time intervals. To determine which
vertices to version, all we need to know if information is
flowing on an edge. We identify that state with active and
inactive labels on edges. An active edge is an edge whose
association time interval has a start time, but whose end time
is still undefined. In contrast, an inactive edge has both a start
time and an end time. Further, when an edge becomes inactive
(for instance, due to a close event) its status is marked. This
implies any attempts to reuse this vertex must use a version of

the vertex instead of the old version because the old version
is on some other causally dependent path.

Figure 2(a) illustrates this real-time construction in which
the algorithm connects C to A1. Marking A1, B, and D
implies previous use in a causally dependent path. Further,
there is an information flow from B to A1, and A1 to D. If C
connects to A1, all nodes that causally depend on A1 must be
versioned as in Figure 2(b) to preserve the flow of information
from B to D via A1.

Fig. 2: An example of tracking information flows.

Algorithm 1 and 2 describe the resulting algorithm. In
Algorithm 1 we separate the open system call into two events,
openRead and openWrite as process and file vertices are
swapped and the edge labels are different. For lack of space,
we do not provide a line-by-line description of the algorithms.
Instead, we refer the reader to the technical report [11]. In this
report, we also show that all paths in a version provenance
graph generated by Algorithms 1 and 2 are valid causal
dependencies.

B. Container replay with changing inputs

Given a versioned graph G generated by Algorithms 1, 2
and a list of input files {F}, which differ from the original
inputs, Algorithm 3 determines which selective processes to
re-compute. It does so by selecting all processes that are
causally dependent upon {F}.

Since the input graph, G is a versioned graph, only
causally dependent associations exist between vertices (see
Definition 3). To determine which processes to re-execute we
consider each process u that depends on file v ∈ {F}. If this
process u is not in PΦ and it is also not a descendant of any
process in PΦ we add this process u to the list of causally
dependent processes PΦ (lines 4-7). However, before adding
process u (Step 2 - line 6), we eliminate all us descendants
in PΦ if any exist (Step 1). Any files dependent upon u are
appended to F (Step 3). Once the algorithm determines all
dependent processes of altered input files, the processes in PΦ

are re-executed (lines 8-9).
The main idea of using the versioned provenance graph

in Algorithm 1 and Algorithm 3 is to balance the costs
of versioning (e.g. version graph traversal, process check-
pointing, and file versioning), and the gain in incremental
recomputation. We note that a process will be versioned if
and only if it is marked (i.e., spawns a process or opens/closes
an output file) and then opens an input file. Naturally, many

Algorithm 1: Dependence Graph
input : Application Events
output: G a dependence graph

1 G = an empty version graph
2 latest(x) = a function to return the latest version vertex

of x
3 foreach (Event ae in ApplicationEvents) do
4 switch ae.Syscall do
5 case openRead(ae.Process, ae.F ile)
6 connect(latest(ae.F ile), latest(ae.Process))

7 case closeRead(ae.Process, ae.F ile)
8 disconnect(latest(ae.F ile),

latest(ae.Process))
9 case openWrite(ae.Process, ae.F ile)

10 connect(latest(ae.Process), latest(ae.F ile))

11 case closeWrite(ae.Process, ae.F ile)
12 disconnect(latest(ae.Process),

latest(ae.F ile))
13 case spawn(ae.Parent, ae.Child)
14 connect(latest(ae.Parent), latest(ae.Child))
15 disconnect(latest(ae.Parent),

latest(ae.Child))

16 return G

processes in an application can qualify these criteria and
incur a versioning overhead, but the potential for reuse in
incremental recomputation may not be clear. In our evaluation
section (Section VI) we experiment with both our versioning
algorithm as planned and with the frequency of versioning
described in the paragraph above.

V. IMPLEMENTATION

We describe the implementation of our container runtime.
The author creates the container by executing the application
under the context of the runtime. This audits the application
with ptrace, which intercepts application system calls. The
application events are an input to the algorithm in Section IV,
which creates in real-time the versioned provenance graph for
that execution. While creating the versioned provenance graph,
the runtime also physically generates the process and file
versions and stores them in the container. We create process
checkpoints using the Linux utility checkpoint/restore-in-user
space (CRIU) [12], and use a de-duplication layer to maintain
file versions. The synchronized creation of the version graph,
and the physical process checkpoints and file versions allows
for mapping the conceptual file/process version in the graph
with their physical serializations.

When the user re-executes an application, the runtime again
observes it using ptrace, but since a versioned provenance
graph exists for the application, it compares the new execution
with the old execution using recomputation algorithm in
Section IV-B. The algorithm retrieves necessary process and
file versions to perform the recomputation. We now describe
how to create and store process and file versions.

Algorithm 2: Connect and disconnect functions

1 connect (a, b):
2 {M} = reverse traversal of incoming active edges of

G starting at b and stopping the traversal of each
branch upon encountering an unmarked vertex.
Return all encountered marked version vertices.

3 foreach (marked vertex m in {M}) do
4 m′ = new version of m
5 G.V += m′

6 foreach (marked vertex m in {M}) do
7 m′ = latest(m)
8 G.E += new inactive edge (m′ → m)
9 foreach (outgoing active edge e (m→ u) in

G.E) do
10 label e as inactive
11 G.E += new active edge (m′ → latest(u))

12 foreach (incoming active edge e (v → m) in
G.E) do

13 label e as inactive
14 G.E += new active edge(latest(v)→ m′)

15 G.E += new active edge (latest(b)→ latest(a))

16 disconnect (a, b):
17 {UM} = traverse all active outgoing edges of a

stopping the traversal of each branch upon
encountering a marked vertex. Return encountered
unmarked version vertices including a

18 foreach (u in {UM}) do
19 mark(u)

20 label the edge (b→ a) as inactive

Algorithm 3: Incremental Recomputation
input : Dependence graph G and list of modified input

files {F}
output: Execute all causal dependent processes

1 PΦ = Empty
2 foreach (file v in {F}) do
3 foreach (edge e = {u, v} in G.E) do
4 if (process u is not in PΦ) && (u is not directly

or indirectly spawned by any process in PΦ) then
5 Step 1: If any p ∈ PΦ and p is a descendant

of u, remove p from PΦ

6 Step 2: PΦ ←− u
7 Step 3: if u or a descendant of u writes to

any file f ∈ G.V , add f to F

8 foreach (process p in PΦ) do
9 Execute p

Process Checkpoints To checkpoint process versions we
use functionality provided by Checkpoint and Restore in
Userspace (CRIU) [12]. CRIU snapshots the state of a compu-
tation (which may consist of multiple processes) and then later
restore the computation to a running state. For each piece of
state that the kernel records about a process, checkpoint-restore
queries the kernel twice: first about the value of the process
state, to prepare for dumping the state during a checkpoint, and
second to pass that state back to the kernel when the process
is restored. CRIU defines this process state recursively, i.e.,
the process state consists of virtual memory mappings, open
files, credentials, timers, process ID of the parent process, and
all its children. Technically, a straightforward integration of
SciInc with CRIU is not possible. CRIU also collects state
of a running process by freezing the process using ptrace,
and copies the state into a file. Since SciInc also relies
on ptrace as a system call interposition method for tracking
interactions between files and processes, it creates a circular
dependency problem: if a process is being provenance-tracked
with ptrace, then it cannot be checkpointed also with ptrace, as
no operating system kernel allows double tracing of a process.
Consequently SciInc cannot integrate with CRIU API but
must incorporate explicit checkpoint/restore functionality as
part of the provenance tracking.

To checkpoint, the SciInc runtime only snapshots the
process, which Algorithm 3 determines to version. Since CRIU
assumes process state is recursively defined, and Algorithm 3
only checkpoints a specific process, we have changed the
checkpoint method to only checkpoint a specific processes
as requested by the runtime. This significantly reduces the
overhead of checkpointing and makes it efficient for restoring
processes for container replay.

File Versioning Versioning of files requires a method to
de-duplicate content. Our current method is based on cre-
ating an archive of the container and using content-defined
chunking [13] to divide the content of the containers into
small chunks identified by a hash value. We compare new
chunks to stored chunks, and when-ever matches occur, we
replace redundant chunks with small references that point to
stored chunks. We use rsync’s algorithm for content-defined
de-duplication. However, unlike rsync, we use a combination
of fixed-size and rolling hashes. Once the algorithm computes
rolling hashes for a file and detects a different block, it stores
the difference itself as a delta to get a specific version of a file.
[6] describes a more detailed description of rolling hashes and
computed deltas.

VI. EVALUATION

In this section, we describe how the algorithms implemented
within SciInc are evaluated in comparison with other can-
didates with three usecases.

To the best of our knowledge, this SciInc is the first
tool that supports reuse execution or incremental execution
at the container level. We evaluate on two criteria: container-
ization execution (Section VI-A) and incremental execution
(Section VI-B). In each section, we select an appropriate

competitor with which to make a comparison. To show the ef-
fectiveness of containerization in SciInc (Section VI-A) we
compare with Docker [2]. In VI-B we show the differences in
incremental recomputation between SciInc and IncPy [14],
[15]. IncPy is an enhanced Python interpreter that speeds up
script execution times by automatically memoizing function
calls.

System settings. Our experiment was conducted on a
desktop computer with an Intel Core i7-3770 3.4Ghz (8 cores),
20GB of main memory, 1 TB SATA HDD, and running an
Ubuntu 18.04 64-bit operating system. Since our experiment
aims to show the efficiency of incremental execution, we
conduct all experiment in the same platform to reveal the
benefit of incremental execution between executions without
any impact of platform differences. This does not mean our
proposed method cannot be used to repeat across platforms.
Indeed, similar to Docker, SciInc can easily be used to
repeat its containers in any platform as long as SciInc
gets installed there (for more details see [9], [6], [7], [19].
Meanwhile, IncPy can only repeat its packages in the same
environment.

Usecases. We selected three usecases for our evaluation:
(i) Chicago Food Inspections Evaluation (FIE) [16], (ii) the
Variable Infiltration Capacity (VIC) [17], and (iii) Incremental
Query Execution (IQE) [18]. The detailed descriptions of FIE,
VIC and IQE are shown in Table I.

A. Containerizing effectiveness
This comparison measures the effectiveness of container-

izing an application in terms of storage, creation time (i.e.,
containerizing or building time), and re-execution time. We
examine the differences between SciInc and Docker with
the selected projects from Table I.

Container size. Figure 3 shows the container sizes in
SciInc (Sci. container) and Docker (Doc. image) with
different projects having original application sizes (App. Size)
shown in Table I.

Fig. 3: Container sizes in SciInc and Docker with different
projects.

As shown, in Figure 3, Docker images are 19X, 7X and
2.5X larger than SciInc containers for IQE, FIE and VIC

TABLE I: Usecases descriptions.

FIE [16] VIC [17] IQE [18]

Source code languages R, Bash C, C++, Python, C shell script, Fortran Python
Source code files 29 97 5
Data files 14 11,481 5
Dependency files 659 357 112
Size of all files 306.6 MB 1.2 GB 22 MB
Normal run time 286.756 s 40.259 s 5.226 s

respectively. These larger sizes can be explained by Docker’s
need to add into the images all information about the linux
base kernel as well as libraries, dependencies, and input
parameters. SciInc only containerizes the digital artifacts
(libraries, dependencies or files) that are touched during the
execution, significantly reducing the container sizes. Moreover,
SciInc uses deduplication techniques when storing its con-
tainers. As a result, in the case of FIE and VIC, the sizes of
SciInc containers are even slightly smaller than the original
application package sizes (App. size, in Figure 3).

Auditing and re-execution times. Figure 4 presents the
normal run-times, auditing and re-execution times of different
projects with SciInc and Docker.

Fig. 4: Normal runs, auditing and re-execution times in
SciInc and Docker with different projects.

A first observation is that auditing (Sci. Audit, in Figure 4)
with SciInc only takes slightly longer time than a normal
run (Normal run, in Figure 4). SciInc spends 0.6, 18 and 29
seconds of extra-time to build the containers for IQE (84KB),
FIE (307MB) and VIC (1.2GB) respectively. The increase
in time during auditing comes from the fact that SciInc
needs to copy all digital artifacts required for the application
execution into the container and to commit the containers into
its database; the larger the application, the longer it may take
to build a container.

Docker takes longer to build an image than the original
run and longer than a SciInc containerization (see Doc.
build, in Figure 4). For example, Docker spends more than
4X longer time to build an image for FIE and 9X longer time
to build an image for VIC. As previously mentioned, to build
an image, Docker must add all information about the linux
kernel, libraries, dependencies, input files and so on. Most of
the time, in comparison with SciInc, the image built by
Docker contains more digital artifacts than it needs for its

re-execution. Furthermore, the process of building an image
includes installing all required libraries, which can require a
long time to complete.

It is also important to emphasize that the image building
times that we reported in this experiment are only the time
to run the Docker build command (i.e., docker build); a
step which occurs after all the Docker configurations are set.
Normally, it takes more time to create a Dockerfile and to
verify the image than to run the build command. Creating a
Dockerfile requires some knowledge about the application to
correctly specify all the information about the linux kernel,
libraries, input files, source, etc. Any missing materials will
result in an error and require extra time to rebuild the image.
In our case, the actual time to build and verify Docker images
for IQE, FIE and VIC measured in hours. It may take much
more time or even be impossible to build a Docker image if
one does not have enough knowledge about the application.

In contrast, SciInc requires no extra-time for installation
or configuration. SciInc automatically builds the container
when the application runs and guarantees a successful re-
execution of its container.

As shown in Figure 4, SciInc also outperforms Docker
in terms of re-execution time (see Sci. exec and Doc. exec). In
all evaluated cases, re-execution times in SciInc are slightly
higher than normal runs and smaller than those in Docker. To
re-execute applications, Docker will run processes in isolated
containers which run on a host machine. The additional
virtualization layer increases the time of execution. SciInc
re-executes the application directly on the host machine with
ptrace and redirects all system call paths to paths within the
special root path of the container; there is no virtualization
layer.

B. Incremental recomputation
In this section we first present the overhead of automatic

checkpoint creation and then discuss the speed-up (gain) which
may be realized through the restoration of a checkpointed
process.

Since Docker does not support incremental recomputation
we did not select Docker as a candidate in this section. Instead
we consider IncPy [15], [14], a known tool for incremental
execution with Python. However, there is a fundamental dif-
ference between IncPy and SciInc. IncPy is an enhanced
Python interpreter that speeds up script execution times by
automatically memoizing function calls, whereas SciInc
supports incremental recomputation at the container level
through checkpoint restore. The experiments in this section
aim to show the differences and tradeoffs in incremental

recomputation between these methods. We show both the
overhead and the gain of two versioning methods of SciInc
(Sci. Ver1 and Sci. Ver2) and IncPy (IncPy).

Fig. 5: Total number of versions created with two versioning
methods in SciInc and IncPy with different projects.

As IncPy is a modification of a python 2.6 interpreter, it
is only meaningful for use with python programs. Our IQE
example is the only computation in our experiment suite which
is comprised solely of python code and will therefore be
used for comparison in this section. We note that although
IncPy only works with the Python interpreter, it is possible
for function level memoization to be ported to other runtimes
or compilers (e.g., C, C++, Java), though it is not clear how
effective the technique may be in other coding languages (for
more details see [15], [14]).

Figure 5 shows the number of functions memoized by IncPy
and the number of checkpoint versions created considering
two versioning methods in SciInc. The second method of
SciInc (Sci. Ver2) creates version whenever a process opens
a file, resulting in a larger number of versions. The first method
of SciInc (Sci. Ver1) reduces the number of versions created
by only creating version as dictated by Algorithms 1 and 2.
Increasing the number of versions created allows for increased
granularity of checkpoint restore, but also increases overhead.

Overhead. The total overheads of running applications with
versioning methods in SciInc and with IncPy in terms of
space and time are shown in Figures 6 (a) and (b) 2; whereas
the Figures 6 (c) and (d) present the average costs (in space and
time) of creating one image/snapshot with versioning methods
in SciInc and with IncPy.

As expected, the overheads (in space and time) of Sci. Ver2
are much larger than those of Sci. Ver1. This trend is expected
since there are many more versions created in Sci. Ver2 than
in Sci. Ver1. The second observation is that, IncPy has very
small overheads (in both space and time) in comparison with
SciInc. IncPy records the bytecodes of a memoized function
and its dependencies as well as the function arguments and the
return values. This is a smaller number of bytes than recording
the bytes which make up the state of the process.

Speed-up/Gain. The motivation behind partial recomputa-
tion is ultimately to save time when repeating a computation.

2Note that we use logarithmic scale in y axes of those figures for the better
readability

TABLE II: Incremental recomputation in SciInc and IncPy
with IQE.

No change File input changed

master.db usercomment.txt

Sci. Ver2 no repeat (100%) Step 2 (5%) Step 5 (95%)
Sci. Ver1 no repeat (100%) Step 1 (0%) Step 4 (80%)
IncPy no repeat (100%) Step 2 (5%) Step 2 (5%)

TABLE III: Incremental execution in SciInc with VIC.

No change File input changed

stationinfo.txt prec.input prcp.inf

Sci. Ver2 100% 0.39% 95.34% 99.10%
Sci. Ver1 100% 0% 95.34% 99.10%
IncPy NA NA NA NA

Demonstrating speed-up is hard to do objectively. The authors
could present a test case where tremendous gains are achieved;
a severe critic could point to cases where no benefit could
be realized. To the best of our knowledge, no generalized
benchmarks to measure the effectiveness of a recomputaition
method exist. Nonetheless, we supply Tables II and III to show
the speed-up which may be achieved on our IQE and VIC test
cases.

Figure 7 illustrates the workflow of IQE which consists of
6 steps and input files that may be changed at re-execution
time. In this test case, Sci. Ver2 creates checkpoints in each
step, while Sci. Ver1 creates only one checkpoint at step 4.
IncPy memoizes all the function calls at each step.

Table II shows the different gains made by SciInc and
IncPy with the IQE test case. If no inputs change in a
subsequent run, there is no repeated computation when using
any of the methods; 100% of the run-times are skipped.
However, if changes were made to master.db (step 2) before
the re-execution, then both Sci. Ver2 and IncPy repeat the
exectution from the Step 2; 5% of the run-times are saved.
In contrast, since Sci. Ver1 has not created any checkpoints
before Step 4, it needs to re-execute the container from the
beginning (Step 1).

If the change was made in usercomment.txt file (Step 5) (see
last column in Table II), Sci. Ver2 re-executes the container
at Step 5 and saves around 95% of the original run-time. Sci.
Ver1 executes the container at Step 4 and saves around 80% of
run-time. IncPy executes the program from Step 2 and saves
only 5% of run-time. IncPy needs to execute from Step 2,
because it memoizes the function calls by monitoring the status
of functions’ dependencies, and does not capture the internal
versions of dependencies.

Similarly, Table III presents the incremental execution in
SciInc with VIC when the changes were made at station-
info.txt, prec.input and prcp.inf at 0.39%, 95.34% and 99.10%
of run-times respectively. Since Sci. Ver2 creates a checkpoint
in every open file operation, it maximizes the incremental ex-
ecution gain. Meanwhile, Sci. Ver1 creates fewer checkpionts
and thus may save less execution time than Sci. Ver2. For
instance, if a change was made to stationinfo.txt, then Sci.
Ver2 can save around 0.39% of run-time, while Sci. Ver1 can

Fig. 6: The overhead of two versioning methods in SciInc and IncPy with different projects.

Fig. 7: Processing steps in IQE.
save nothing.

Overall, Sci. Ver1 and Sci. Ver2 show the trade-offs between
two different granularities of checkpoint creation methods.
One can increase gain but suffer larger overhead (Sci. Ver2), or
achieve less gain while reducing overhead (Sci. Ver1). IncPy
offers incremental execution at the function level with smaller
overhead, but does not provide containerization and is limited
to a particular programming language.

VII. RELATED WORK

We review work related to the use of containers for conduct-
ing reproducible science, issues with auditing provenance in
containers, and incremental recomputation using provenance.
Containers Keahey et al. initially proposed using virtual
machines (VMs) to encapsulate large, complicated stacks of
scientific software so they can be deployed across super-
computing centers without the need to install each software
package individually in every new environment. While VMs
are still the unit of sharing and deployment on the cloud,
several note that VMs are space inefficient for computational
reproducibility [20].

Containers enable light-weight sharing of computational
results and improve reproducibility by making computations
portable across computing environments with Docker [3].
However, by default Docker does not include capabilities
to monitor applications or optimize re-execution of iterative
applications.

The UNIX ptrace utility can be used to monitor execution
of applications. Tools such as CDE [21], ReproZip [22],
[8], Sciunit [6], [7] use the UNIX ptrace utility to monitor
system calls that an application makes. Monitored system
calls are used to create a Docker-like container consisting of
application binaries, data, and all static and dynamic software
dependencies that can be traced during program execution.
In this paper, we also have used the UNIX ptrace utility
to monitor applications, and create a data dependency trace,
but we show that a trace without versions is insufficient for
incremental re-execution.

Using Provenance for Recomputation [23] considers a com-
putation as a data dependency graph (DDG), and self-adjusts
the computation for input changes by developing a memoized
change propagation algorithm. They also analyze the stability
of the re-computed data dependency graph. In their case, the
DDG is established at the granularity of function calls. Further,
all function calls are assumed to have O(1) execution in time
for stability analysis. Auditing at the granularity of function
calls can impose a significant overhead. Moreover, processes
cannot be assumed to be O(1) execution in time. Thus we
do not provide stability guarantees but use the self-adjusting
principle to guarantee the maximum possible re-execution
given changed inputs.

Practical recomputation is also proposed in provenance
tracking systems, such as PASS [5] and SPADE [4]. These
systems audit provenance at the granularity of files and
processes in an application agnostic way using auditing or
ptrace mechanisms. Provenance traces are used to either avoid
redundant computation [24] or detect errors [25]. In SciInc
we capture provenance in application agnostic way similar
to SPADE and PASS, but differ from these systems in two

specific ways: First, unlike these systems we do not audit
all system calls. In particular application read/writes are not
audited, which impose a heavy application overhead and
reduce the advantage of memoization. Avoiding reads and
writes changes the recomputation guarantees. Our algorithm
errs on the side of increased recomputation in exchange for
decreased audit overhead. Second, unlike these systems we
consider a versioned provenance graph. Causal relationships
must be versioned to determine which versions contributed to
recomputation.

Recently several methods have been proposed to im-
prove the performance of iterative applications. Data-intensive
frameworks, such as Spark [26], Pregel [27], and Nectar [28],
and programming-language frameworks such as IncPy [15],
[14] cache intermediate state and incrementally recompute
subsequent iterations. There is no known use of such frame-
works to improve container replay for conduct of reproducible
science.

VIII. CONCLUSIONS

Several conferences, including this one, are adopting artifact
description/artifact evaluation process. Authors are increas-
ingly adopting containers to encapsulate code, data, and envi-
ronment and conduct reproducible science. In this paper, we
have examined how a container runtime can support reviewer
requirements. We presented SciInc, a container runtime
system, that efficiently supports incremental recomputation of
data analysis experiments with the aim of improving their
review time. Using a versioned provenance graph we show
how incremental recomputation can be achieved within the
isolation requirements of the container without modifying
programs or introducing new software stacks. Our experiments
show SciInc has better performance than current off-the-
shelf containers used for reproducible science and compiler
specific incremental recomputation techniques.

ACKNOWLEDGEMENTS

This work is supported by National Science Founda-
tion under grants CNS-1846418, NSF ICER-1639759, ICER-
1661918.

REFERENCES

[1] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, Sep. 2014.

[2] “Docker,” https://www.docker.com/, 2019, [Online; accessed 8-Jan-
2019].

[3] C. Boettiger, “An introduction to docker for reproducible research,”
SIGOPS Oper. Syst. Rev., vol. 49, no. 1, pp. 71–79, Jan. 2015. [Online].
Available: http://doi.acm.org/10.1145/2723872.2723882

[4] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in
distributed environments,” in Proceedings of the 13th International
Middleware Conference, ser. Middleware ’12. New York, NY,
USA: Springer-Verlag New York, Inc., 2012, pp. 101–120. [Online].
Available: http://dl.acm.org/citation.cfm?id=2442626.2442634

[5] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 4–4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267359.1267363

[6] D. H. Ton That, G. Fils, Z. Yuan, and T. Malik, “Sciunits: Reusable
research objects,” in IEEE eScience, Auckland, New Zealand, 2017.

[7] Z. Yuan, D. H. Ton That, S. Kothari, G. Fils, and T. Malik, “Utilizing
provenance in reusable research objects,” Informatics, vol. 5, no. 1, 2018.

[8] F. Chirigati, R. Rampin, D. Shasha, and J. Freire, “ReproZip: Computa-
tional reproducibility with ease,” in SIGMOD’16, 2016, pp. 2085–2088.

[9] “Sciunit-i,” https://sciunit.run/, 2017, [Online; accessed 10-Sep-2017].
[10] W3C, “W3C PROV-DM: The PROV data model,” 2013. [Online].

Available: https://www.w3.org/TR/prov-dm/
[11] A. Youngdahl, D. H. Ton That, and T. Malik, “Sciinc technical report,”

https://github.com/ayoungdahl/SciInc-Technical-Report, 2019, [Online;
accessed 20-May-2019].

[12] “Checkpoint/restore in userspace,” https://criu.org/, 2019, [Online; ac-
cessed 8-Jan-2019].

[13] A. Muthitacharoen, B. Chen, and D. Mazieres, “A low-bandwidth
network file system,” ACM SIGOPS Oper. Syst. Rev., vol. 35, no. 5,
pp. 174–187, 2001.

[14] P. Guo and D. Engler, “Using automatic persistent memoization to facil-
itate data analysis scripting,” in Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ser. ISSTA ’11. New
York, NY, USA: ACM, 2011, pp. 287–297.

[15] P. J. Guo and D. Engler, “Towards practical incremental recomputation
for scientists: An implementation for the Python language,” in Proceed-
ings of the 2nd Workshop on the Theory and Practice of Provenance,
ser. TAPP’10. Berkeley, CA, USA: USENIX Association, 2010.

[16] City of Chicago, “Food Inspection Evaluation,” https://chicago.github.
io/food-inspections-evaluation/, 2017, [Online; accessed 7-May-2017].

[17] M. M. Billah, J. L. Goodall et al., “Using a data grid to automate data
preparation pipelines required for regional-scale hydrologic modeling,”
Environmental Modelling & Software, vol. 78, 2016.

[18] D. DBGroup, “Incremental Query Execution,” 2019, [Online;
accessed 3-April-2019]. [Online]. Available: https://TonHai@bitbucket.
org/TonHai/iqe.git

[19] Q. Pham, T. Malik, and I. Foster, “Using provenance for repeatability,” in
TaPP’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 2:1–2:4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482949.2482952

[20] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated perfor-
mance comparison of virtual machines and linux containers,” in 2015
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), March 2015, pp. 171–172.

[21] P. J. Guo and D. Engler, “CDE: Using system call interposition to auto-
matically create portable software packages,” in USENIX’11. Berkeley,
CA, USA: USENIX Association, 2011.

[22] F. Chirigati, D. Shasha, and J. Freire, “Reprozip: Using provenance
to support computational reproducibility,” in Proceedings of the 5th
USENIX Workshop on the Theory and Practice of Provenance, ser. TaPP
’13. Berkeley, CA, USA: USENIX Association, 2013, pp. 1:1–1:4.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2482949.2482951

[23] U. A. Acar, “Self-adjusting computation: (an overview),” in Proceedings
of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, ser. PEPM ’09. New York, NY, USA: ACM,
2009, pp. 1–6. [Online]. Available: http://doi.acm.org/10.1145/1480945.
1480946

[24] H. Lakhani, R. Tahir, A. Aqil, F. Zaffar, D. Tariq, and A. Gehani, “Opti-
mized rollback and re-computation,” in 2013 46th Hawaii International
Conference on System Sciences, Jan 2013, pp. 4930–4937.

[25] K.-K. Muniswamy-Reddy and D. A. Holland, “Causality-based
versioning,” Trans. Storage, vol. 5, no. 4, pp. 13:1–13:28, Dec. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1629080.1629083

[26] Spark, “Spark Overview,” 2019, [Online; accessed 3-April-2019].
[Online]. Available: https://spark.apache.org/docs/latest/index.html

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, ser. SIGMOD ’10. New York, NY, USA: ACM,
2010, pp. 135–146.

[28] P. K. Gunda, L. Ravindranath, C. Thekkath, and and, “Nectar: Automatic
management of data and computation in datacenters,” in Proceedings of
the 9th Symposium on Operating Systems Design and Implementation
(OSDI), October 2010.

