
Journal of Computational Science 9 (2015) 137–142

Contents lists available at ScienceDirect

Journal of Computational Science

journa l homepage: www.e lsev ier .com/ locate / jocs

An invariant framework for conducting reproducible computational
science

Haiyan Mengb, Rupa Komminenia, Quan Phama, Robert Gardnera, Tanu Malika,∗,
Douglas Thainb

a Computation Institute, University of Chicago, Chicago, IL, USA
b Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN, USA

a r t i c l e i n f o

Article history:
Available online 18 April 2015

Keywords:
Preservation framework
Reproducible research
Virtualization
Container

a b s t r a c t

Computational reproducibility depends on the ability to not only isolate necessary and sufficient compu-
tational artifacts but also to preserve those artifacts for later re-execution. Both isolation and preservation
present challenges in large part due to the complexity of existing software and systems as well as
the implicit dependencies, resource distribution, and shifting compatibility of systems that result over
time—all of which conspire to break the reproducibility of an application. Sandboxing is a technique that
has been used extensively in OS environments in order to isolate computational artifacts. Several tools
were proposed recently that employ sandboxing as a mechanism to ensure reproducibility. However,
none of these tools preserve the sandboxed application for re-distribution to a larger scientific commu-
nity aspects that are equally crucial for ensuring reproducibility as sandboxing itself. In this paper, we
describe a framework of combined sandboxing and preservation, which is not only efficient and invari-
ant, but also practical for large-scale reproducibility. We present case studies of complex high-energy
physics applications and show how the framework can be useful for sandboxing, preserving, and dis-
tributing applications. We report on the completeness, performance, and efficiency of the framework,
and suggest possible standardization approaches.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reproducibility is a cornerstone of the scientific
method [4]. Its ability to advance science underscores its
importance—reproducing by verifying and validating a scien-
tific result leads to improved understanding, thus increasing
possibilities of reusing or extending the result. Ensuring the repro-
ducibility of a scientific result, however, often entails detailed
documentation and specification of the involved scientific method.
Historically, text and proofs in a publication have achieved this
end. As computation pervades the sciences and transforms the
scientific method, simple text and static images are no longer suf-
ficient. In particular, apart from textual (and numeric) descriptions
describing the result, a reproducible result must also include sev-
eral computational artifacts, such as software, data, environment

∗ Corresponding author.
E-mail addresses: hmeng@nd.edu (H. Meng), rupa@uchicago.edu

(R. Kommineni), quanpt@uchicago.edu (Q. Pham), rwg@uchicago.edu (R. Gardner),
tanum@uchicago.edu (T. Malik), dthain@nd.edu (D. Thain).

variables, platform dependencies and the state of computation
that are involved in the adopted scientific method [14].

Virtualization has emerged as a promising technology to repro-
duce computational scientific results. One such approach is to
conduct the entire computation relating to a scientific result
within a virtual machine image, and then preserve and share
the resulting image. This way “VMI”s become an authoritative,
encapsulated, and executable record of the computation, espe-
cially computations whose results are destined for publication
and/or re-use. Virtual machine images, like files, can then be
shared [13]. The resulting image, however, may be too large
to share or distribute widely. An alternative light-weight form
of virtualization is to encapsulate only the application software
along with all its necessary dependencies into a self-contained
package. The encapsulation is achieved by operating system-level
sandboxing techniques that interpose application system calls
and copy the necessary dependencies (data, libraries, code, etc.)
into a package, making it lighter weight than a VMI [10]. Yet,
the package is not longer an executable record of the compu-
tation and still requires an accompanying operating system for
execution.

http://dx.doi.org/10.1016/j.jocs.2015.04.012
1877-7503/© 2015 Elsevier B.V. All rights reserved.



138 H. Meng et al. / Journal of Computational Science 9 (2015) 137–142

While both approaches provide mechanisms for encapsulating
the computations associated with a scientific result, neither form
of virtualization provides any guarantee that the included pieces
of software will indeed reproduce the associated scientific result.
In general, in the absence of reproducible policy guidelines, such
guarantees can be difficult to provide. Preserving the encapsulated
computations in such a way that they are always reproducible
will improve upon the guarantees. A preservation mechanism
can increase the ease of image or package installation, alter
dependencies implicit to computation as software components
evolve or become deprecated, and provide mechanisms for doc-
umentation that make computations easy to understand after the
fact.

The two approaches that address the preservation challenge
are as follows: one, the introduction of tools that help document
dependencies and provide software attribution within VMIs or
packages; and two, the use of software delivery mechanisms such
as centralized package management, Linux containers, and the
more recent Docker framework. We examined the first approach
previously in [17]. In this paper we examine the second approach.
We consider in particular the lightweight virtualization because
we believe together with more standardized software delivery
mechanisms, the two combined can address the reproducibility
challenge for a wide variety of scientific researchers. A package
created by those lightweight approaches encapsulates all the nec-
essary dependencies of an application, and can be used to repeat
the application through different sandbox mechanisms, including
Parrot [22], CDE [10], PTU [16], chroot, and Docker [3].

Of course our solution represents only one way to preserve
applications. Broadly, two different approaches to preserve appli-
cations have been adopted: force cleanliness or measure the mess.
The former forces users to specify the execution environment for
an application in a well-organized way. The latter causes end users
to construct the environment as desired, and the complexity of the
environment is measured in terms of its dependencies. Our objec-
tive here is to measure the mess as-is and then preserve it over time.

To conduct a thorough examination, we consider real-world
complex high energy physics (HEP) applications, independently
developed by two groups, that must be reproduced so that the
entire HEP community can benefit from the analysis. We describe
challenges faced in reproducing the applications, and we con-
sider the extent to which reproducibility requirements can be
satisfied with lightweight virtualization approaches and software
delivery mechanisms. We propose an invariant framework for com-
putational reproducibility that combines lightweight virtualization
with software delivery mechanisms for efficiently capturing,
invariantly preserving, and practically deploying applications. We
measure the performance overhead of lightweight virtualization
and software delivery approaches, and show how the preserved
packages can be distributed to allow reproduction and verification.

2. High energy physics applications

We study applications taken from two experiments of the CERN
Large Hadron Collider, namely the ATLAS experiment and the CMS
experiment. In LHC, the ATLAS and CMS experiments are dis-
tinct, developed independently by two entirely separate physics
communities. Consequently, their applications have very different
software distribution and data management frameworks, raising
the question of whether common reproducibility frameworks and
tools work across the two communities. One of the applications
of the ATLAS experiment is the Athena application, which is a
general purpose processing framework including algorithms for
event reconstruction and data reduction [6]. The CMS experiment is
conducted through an application termed TauRoast, which searches

Fig. 1. Inputs to Tau Roast.

for specific cases where the Higgs boson decays to two tau leptons
[8].

Code and data in TauRoast are available through five different
networked filesystems which are mounted locally, an HDFS cluster
for the CMS dataset, some configuration files were stored on CVMFS
[2], and a variety of software tools were on an NFS, PanFS and AFS
systems. In addition, code may exist in version control systems such
as Git, CVS, and CMS Software Distribution (CMSSW).

Data that is input to TauRoast is obtained by reducing it through
a pipeline, as shown in Fig. 1. Consequently, the real input data may
vary depending upon the topic of research. Similarly the software
may name many possible components but the used components
are smaller than the named ones.

Data in Athena is obtained through an external Dropbox-like
system called the FaxBox, but does not pass through any reduction
steps. Code is obtained through CVMFS, which provides the analysis
routines. The invoked configuration will change, however, depend-
ing upon the input data code. Thus in Athena the used code and
configuration are dynamic depending upon input data, whereas in
TauRoast the code and data are static, but the amount of data and
code to include changes depending on the science involved.

3. Challenges in reproducing HEP applications

The application specifications of TauRoast and Athena were pro-
vided to us from the CMS and ATLAS Collaborations respectively
in the form of email describing in prose how to obtain the source,
build the program, and run it correctly on a specific platform type
available at our home institutions. There were no explicit guaran-
tees that it would run on alternative platforms. This minimal level
of documentation about software is routine in the scientific world.
Below we describe the challenges faced when capturing applica-
tion details in reproducible form and then preserving them for
subsequent reuse.

• Identifying all dependencies. Due to the distributed, collabo-
rative nature of HEP software development, these applications
depend on a large number of external and local software com-
ponents. External dependencies are often explicitly stated, such
as when the application makes connections to Github resources
or CVS servers for downloading source files. When the applica-
tion has initiated execution then implicit network connections
may be present that require identification of dependencies on
all machines where execution takes place. Implicit local depend-
encies can arise as a result of mounted filesystems. In TauRoast,
the application data and code is distributed on five networked
filesystems, and in Athena on two networked filesystems. Since
these filesystems appear local to the application machine, it is
important to check and capture mounted filesystems and their
respective mount points.



H. Meng et al. / Journal of Computational Science 9 (2015) 137–142 139

• Configuration complexity. In order to correctly reproduce an
application requires that run-time configurations and consis-
tency checks on the available software are effectively captured
and preserved. For CMS, the scram software management tool
is used to locate the appropriate version of software, set envi-
ronment variables such as the PATH, run any tool-specific
configurations, and do the same for all software on which it
depends. A reproducible framework must capture the work of
such software management tools so that the framework can con-
duct similar checks on a new machine.

• High selectivity. Although the total size of the resources accessed
by HEP programs is very large, the size of the data and software
actually used are typically much smaller. The script will often
name an entire repository or data source, but the program needs
only a handful of items from that source. For example, the data
may be stored on an HDFS file system with 11.6TB of data, but
the program may consume only 18GB. Thus there is a size trade-
off in terms of capturing dependencies mentioned in the program
and dependencies actually used in the program. A reproducible
framework must include robust rules about not including super-
fluous dependencies, but including unused dependencies that
may potentially see much use during program execution.

• Rapid changes in dependencies. Over the course of three months
between collecting the initial email, analyzing the programs, and
writing this paper, the computing environment saw continuous
change. The CMSSW software distribution released a new version,
the target execution environment was upgraded to a new oper-
ating system, and the application switched from CVS to Git for
obtaining the software. For Athena, the computing environment
has the potential for daily change since upgrades to the software
framework occur on a nightly basis. While the users of this soft-
ware seem accustomed to constant change, which is appropriate
during algorithm development, any new technique for preserva-
tion that may rely on an external service (every one that may
appear highly stable) will require caution to choose the actual
releases used during the time of publication.

• Dependencies for reproducible execution. Capturing the nec-
essary and sufficient dependencies that are part of an application
is sufficient for repeatability, but possibly for not reproducibility.
Repeatability implies that if a result depends on running program
X, we must be able to run exactly X again. In reproducibility the
goal is rarely limited to running precisely what a predecessor did.
Often, the objective is to change a parameter or a data input in
order to see how the result is affected. To that end, the preserva-
tion system must capture enough of the surrounding material in
order to permit modifications to succeed. Further, a better under-
standing of how end users will consume preserved software will
help to shape how software should be preserved.

4. The invariant framework

Given the many challenges of reproducing HEP applications,
we now describe an invariant framework. If present within large
collaborations, this framework can enable application developers
to share their application with other researchers, and for other
researchers to reproduce the shared application. To satisfy invari-
ance, the framework must include mechanisms for:

• Capturing dependencies and configurations: Capturing tools
must record dependencies that are used by the program, includ-
ing hardware, OS, kernels, static and dynamic dependencies,
local and networked dependencies, source codes and data files.
Stateful interactions with commercial software, such as propri-
etary databases and which cannot be captured due to licensing
agreements must persist such that replaying later may be

accomplished without the presence of the commercial software.
In effect, a captured application should behave in exactly the way
the application developer intended.

• Preservation of captured entities: By preservation we define
appropriate mechanisms for (a) documentation of the applica-
tion development, and (b) automation of any task that becomes
necessary to the repetition of the application in exactly the the
way the application developer intended.

Documentation and specification during application develop-
ment can be onerous. The preservation framework must make
programming tools available that focus less on documentation,
and more on scripts, integration, and execution of the depend-
encies such that they are resolved as part of documentation.
Automation can extend to various tasks necessary for ensuring
repeatability such as building software, provisioning of hard-
ware, validation of software against security fixes, new features,
and even monitoring the reproducibility state of a preserved
application, i.e., its source code, dependencies, environment, and
platform. Automated builds and provisioning and continuous
integration service can significantly lower the barriers to running
applications in a new environment.

Despite preservation mechanisms, the application software
may not run as intended. For a reproducers understanding, it may
also be useful to include a logical preservation unit (PLU) that con-
sists of a minimal execution of the software using a small, test
data sample and with specified outputs. The provenance of this
PLU must be captured so that the reproducer can compare the
current run with future reproduction-validation runs.

• Distribution of preserved packages: A captured and preserved
application must be persistently stored and distributed through a
repository. We imagine these repositories to be themselves pre-
served, and linked with a digital library. Metadata and flexible
annotation should be part of this repository for curation over
time.

5. Component tools for reproducible research

We have constructed a first approximation of the invariant
framework by using and modifying a variety of existing technolo-
gies. Of course, a viable long-term strategy for reproducibility must
not depend on a single technology. To this end, we have identi-
fied multiple technologies that can implement each stage of the
framework.

Capturing dependencies. The Unix ptrace mechanism allows
a tracing process to observe all of the system calls performed by an
application, inferring each of the resources upon which an applica-
tion depends. We have extended two existing tracing tools in order
to capture dependency information at the granularity of files and
directories. Dependency may refer to source code, if available, or a
binary file.

Parrot is a virtual filesystem access tool which is used to attach
applications to a variety of remote I/O systems such as HTTP, FTP,
and CernVM-FS. It works by trapping system calls through the
ptrace interface and replacing selected operations with remote
accesses. As a side-effect, Parrot is also able to modify the filesys-
tem namespace in arbitrary ways according to user needs. Parrot is
particularly used in the high-energy physics community to provide
remote access to application software via CernVM-FS. To capture
dependencies, we made small modifications to Parrot to record the
logical name of every file accessed by an application into an exter-
nal dependency list. After execution is complete, a second tool is
used to copy all of the named dependencies into a package.

The second tool, PTU [18], is designed to create a package of an
application by recording all of the binaries, libraries, scripts, data
files, and environment variables used by a program. PTU uses the



140 H. Meng et al. / Journal of Computational Science 9 (2015) 137–142

Fig. 2. Preservation framework.

lightweight virtualization software tool Code Data Environment
(CDE) to observe system calls, but takes a snapshot of every file
at the point of access. In addition to files, PTU records metadata
about the execution environment, such as Linux kernel version,
application version, and dynamic library versions by using standard
Unix commands. PTU also records provenance in the form of a graph
that describes how each file is created or consumed by processes
within the application. Because PTU is focused solely on the prob-
lem of preservation, it can achieve lower overhead than Parrot
when remote data access is not a requirement, as we show below.

Preservation of dependencies. Both Parrot and PTU can observe
the precise set of files accessed by an application. If this precise list
of files is preserved then it should be possible to execute exactly the
same application on exactly the same inputs a second time. How-
ever, if the objective is to re-purpose the application by running it in
slightly different configurations, then the preserved package may
need to be more comprehensive than the strict dependency list.

Many possible heuristics exist for creating the preserved
package from the dependency list. We have implemented three:
In a shallow copy, we copy only the exact dependencies. Where
a directory was listed, a directory is created and populated with
empty files as placeholders to facilitate a directory listing. In a
medium copy, every file in every directory mentioned by the appli-
cation is preserved one level deep. In a deep copy, every file in
every directory mentioned by the application is copied recursively.
Obviously, the more aggressive the preservation, the larger the
package, but also the greater the possibility that the package can
be adapted to other uses. Other approaches to package generation
might including generating the union of multiple dependency sets,
or allowing an expert user to manually add and remove dependen-
cies.

Both Parrot and PTU generate packages that consist of plain
filesystem trees representing the namespace and data of the pre-
served application, and can be easily transformed into whatever
archive format (e.g. ZIP or TGZ) is most suitable. This is desirable
for long-term preservation that may outlive various deployment
technologies. However, neither technology yet integrates the pro-
gramming environment envisioned above for the documentation
purpose. Without these techniques, the preserved packages will
have diminishing value over time.

Distribution and deployment. Once generated, application
packages must be collected, curated, and made available through
publicly shared repositories. Currently, a wide variety of services
and efforts exist in order to share binary objects in this way, and
so we assume such multiple services will be available in the future
(Fig. 2).

Of more immediate interest is the ability to deploy a preserved
package at a desired execution site. Again, long-term preservation
requires artifacts that are independent of any particular technology,
so the package must be sufficiently self-describing in order to work
with multiple technologies. The packages produced by both Parrot
and PTU can today be re-executed through any of the following
mechanisms:

(1) Re-running the application through Parrot, which can
dynamically construct the desired namespace and limit file
accesses to within the preserved package. (2) Generating a virtual
machine image from the package, which can be loaded into a local
virtual machine monitor, or transferred to a cloud service provider.
(3) Converting the package into a Docker image format, enabling it
to be deployed within a lightweight Linux container.

Linux containers and Docker images. Linux Containers provide
multiple isolated instances of execution on top of the same kernel
through OS-level virtualization. Thus they can be used to per-
sist the captured packages into images. Using such containers,
Docker now allows for the preservation of the image in a more
user-friendly way. Docker also provides portable deployment of
containers across platforms, documentation of packages in a script-
able format, and versioning of container images. The image can be
preserved along with dockerfiles, which are text files containing all
the commands to build a Docker image. Similar to shell scripts,
the computational section can help other provisioning tools (e.g.
Chef, Puppet). The text section, written for human consumption,
is more suited for use with a version management system such as
subversion or git, which can track any changes made to the docker-
file. Thus dockerfiles can be used to preserve the namelist of Parrot
packages and provenance description in PTU. Docker is integrated
with a continuous build environment that will not only check and
validate the version of the software in present use, but also make
use of a more recent version to build application software.

6. Evaluation

We evaluated the correctness and performance of running,
packaging, and re-running the Athena and TauRoast applications
using the Parrot and PTU tools. To do this, each application was first
executed directly and its execution time and output were recorded.
Then the application was executed under Parrot and PTU, and a
self-contained package was created for each case. Finally, the appli-
cation was re-executed using the package. The time overhead of
each execution and re-execution was collected and compared with
the recorded reference.

The TauRoast application checks and evaluates a dataset with
the size of 18 GB stored in an HDFS file system, and can be finished
in about 20 minutes when running directly on a server with 64
cores and 126 GB memory. The output of the application includes
an event analysis log and a statistical information, and its size is
approximately 289 KB. The Athena application processes a given
input data file to produce four “derived” data files whereby event
selection corresponding to interest physics channels are made. It
uses the nightly release of the Athena framework and submits an
analysis (“event skimming”) job to obtain derived data, a common
use case in high energy physics data analysis.

Table 1 compares the time overhead of preserving Athena and
TauRoast application using Parrot and PTU. Parrot splits the packag-
ing creation procedure into two sequential steps: first, execute the
application within Parrot and generate the accessed file namelist;



H. Meng et al. / Journal of Computational Science 9 (2015) 137–142 141

Table 1
Time comparison between parrot and PTU.

Application Name Packaging Tool Obtain Name list Create Package Re-Execution (Tool/Time)

Athena Parrot 10 min 14 s 00 min 53 s Parrot / 09 min 14 s
Athena PTU – 08 min 48 s PTU / 07 min 21 s
TauRoast Parrot 22 min 50 s 04 min 25 s chroot / 10 min 24 s
TauRoast PTU – 23 min 30 s PTU / 08 min 40 s

second, traverse the namelist and copy all the accessed files into a
self-contained package. PTU accomplishes the execution procedure
and the package creation procedure concurrently through multi-
threading, bringing 17.5% additional time overhead.

The re-execution time is half or less than half of the original
execution time in both cases of the TauRoast application. During
the original execution, the input dataset is either locally available or
comes from HDFS, which is accessed through FUSE kernel modules.
During the package creation procedure, all the input dataset has
been copied from HDFS into the package on the local filesystem.
Thus the re-execution procedure can obtain its input from the local
filesystem instead of reading the input dataset from HDFS.

Both packages created by Parrot and PTU are a subset of the root
filesystem, which only includes all the accessed files. The original
relationship, such as symbolic links between files and directories
is maintained. The files from pseudo filesystems such as proc and
dev, are ignored. The re-execution procedure uses these pseudo
filesystems from the host machine through redirection techniques.
For the TauRoast application, the sizes of the packages created by
Parrot and PTU are nearly the same, 18 GB. Except for the accessed
files, both Parrot and PTU preserve the execution environment of
the application. The PTU package also includes a leveldb-format
provenance information of the application with the size of 3 MB.

Table 2 illustrates the total size and actually used size of each
source for TauRoast. The total size is too large to be put into a sep-
arate image. However, the actually used size is greatly reduced to
be 18 GB. Within the package, the input dataset nearly occupies the
whole package. All the other libraries and software dependencies
only occupies about 200 MB. As the input dataset grows, it can be
put outside the package to reduce the shipping time of the package.

For the Athena application example, the input file was 224 MB
and output files were 16 MB each. PTU builds a 855 MB package,
while Parrot builds an 825 MB package. The overhead is of
provenance which is 7 MB and some differences is dependency
information.

7. Related work

The capture and preservation environments were treated as
one entity in [15,11]. However, frequently changing experiment
software makes the maintenance of the captured experimental
environment very complex. CernVM [5] treated them as two dif-
ferent categories. The capturing of computing environment is
implemented within CernVM, and the preservation of software

Table 2
Data and code size used by TauRoast.

Dependency Name Location Total Size Used Size

CMSSW code CVS 88.1 GB 5.2 MB
Tau source Git 73.7 MB 212 KB
PyYAML binaries HTTP 52 MB 0 KB
.h file HTTP 41 KB 0 KB
Ntuples data HDFS 11.6 TB 18 GB
Configuration CVMFS 7.4 GB 105 MB
Linux commands localFS 110 GB 110 MB
HOME dir AFS 12 GB 24 MB
Misc commands PanFS 155 TB 8 KB
Total 166.8 TB 18 GB

environment is based on a CernVM filesystem(CVMFS) specifically
designed for efficient software distribution. In fact CVMFS [5] pub-
lished pre-built and configured experiment software releases to
avoid the time-consuming software building procedure, i.e., it did
not preserve software in source code format as emphasized in [7].
However, as we show a simple VMI of binaries can also be too
big in size for distribution, and the preservation itself needs to
include a documentation stage and a distribution stage. We have
described capture tools that include software code when available
to be included in the package.

Attempts from different perspectives to facilitate the repro-
duction of scientific experiments utilizing a preserved software
library have been made. The software distribution mechanism over
network was discussed in [9,2]. A distribution hub through the inte-
gration of user interface, scientific software libraries, knowledge
base into problem-solving environment was described in [19]. The
creation and distribution of language-independent software library
by addressing language interoperability was proposed in [12]. A
scalable, distributed and dynamic workflow system for digitization
processes was proposed in [20]. A distributed archival network was
designed in [21] to facilitate process-oriented automatic long-term
digital preservation. The work in [1] aimed to help non-domain
users to utilize the digital archive system.

8. Conclusions and future work

In this paper, we propose an invariant framework for con-
ducting reproducible computational science - using light-weight
virtualization approaches to preserve applications in the format of
self-contained packages and using standardized software delivery
mechanisms to deliver and distribute preserved packages. We use
two complex high energy physics applications to illustrate how the
framework can help the original authors preserve and distribute the
applications, and others reproduce the applications.

This paper focuses on how to measure the mess and track the
used dependencies to preserve an application. In the following
work, we plan to explore how to preserve an application in an orga-
nized style - specifying the execution environment clearly. How to
preserve and improve the availability of remote network resources
is another important problem to be explored.

The DOI name for the experiment involved in the paper is
doi:10.7274/R0C24TCG, and current information may be found on
the web through http://doi.org/10.7274/R0C24TCG

The Athena experiment is further preserved at: https://sites.
google.com/site/invariantcompatlas/

Acknowledgments

This work was supported in part by National Science
Foundation grants PHY-1247316 (DASPOS), OCI-1148330 (SI2),
PHY-1312842, ICER-1440327, SES-0951576 (RDCEP), and ICER-
1343816 (UChicago subcontract). The University of Notre Dame
Center for Research Computing scientists and engineers provided
critical technical assistance throughout this research effort. The
Open Science Grid at the University of Chicago provided critical
technical assistance throughout this research effort.



142 H. Meng et al. / Journal of Computational Science 9 (2015) 137–142

References

[1] Maristella Agosti, Nicola Orio, To envisage and design the transition from a dig-
ital archive system developed for domain experts to one for non-domain users,
in: Proceedings of the 12th ACM/IEEE-CS Joint conference on Digital Libraries,
ACM, 2012, pp. 11–14.

[2] Jakob Blomer, Predrag Buncic, Thomas Fuhrmann, CernVM-FS: delivering sci-
entific software to globally distributed computing resources, in: Proceedings of
the First International Workshop on Network-Aware Data Management, ACM,
2011, pp. 49–56.

[3] Carl Boettiger, An introduction to Docker for reproducible research, ACM
SIGOPS Oper. Syst. Rev. 49 (1) (2015) 71–79.

[4] Christine L. Borgman, Data, data use, and scientific inquiry: Two case studies
of data practices, in: Proceedings of the 12th ACM/IEEE-CS Joint Conference on
Digital Libraries, 2012, pp. 19–22.

[5] P. Buncic, C. Aguado Sanchez, J. Blomer, L. Franco, A. Harutyunian, P. Mato, Y.
Yao, CernVM-a virtual software appliance for LHC applications, in: Journal of
Physics: Conference Series, vol. 219, IOP Publishing, 2010, p. 042003.

[6] P. Calafiura, M. Marino, C. Leggett, W. Lavrijsen, D. Quarrie, The athena control
framework in production, new developments and lessons learned, 2005.

[7] Michel Castagné, Consider the source: the value of source code to digital preser-
vation strategies, SLIS Stud. Res. J. 2 (2) (2013) 5.

[8] Serguei Chatrchyan, V. Khachatryan, A.M. Sirunyan, A. Tumasyan, W. Adam,
T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan, M. Friedl, et al., Search for the
standard model higgs boson produced in association with a top-quark pair
in pp collisions at the lhc, J. High Energy Phys. 2013 (5) (2013) 1–47.

[9] G. Compostella, S. Pagan Griso, D. Lucchesi, I. Sfiligoi, D. Thain, CDF software
distribution on the grid using parrot, in: Journal of Physics: Conference Series,
vol. 219, IOP Publishing, 2010, p. 062009.

[10] Philip J. Guo, Dawson R. Engler, CDE: using system call interposition to auto-
matically create portable software packages, in: USENIX Annual Technical
Conference, 2011.

[11] N. Chue Hong, S. Crouch, S. Hettrick, T. Parkinson, M. Shreeve, Software Preser-
vation Benefits Framework, Software Sustainability Institute Technical Report,
2010.

[12] Scott R. Kohn, Gary Kumfert, Jeffrey F. Painter, Calvin J. Ribbens, Divorcing
language dependencies from a scientific software library, PPSC (2001).

[13] Sotiria Lampoudi, The path to virtual machine images as first class provenance,
Age, 2011.

[14] Tanu Malik, Quan Pham, Ian T. Foster, SOLE: towards descriptive and interactive
publications, CRC Press, 2014.

[15] Brian Matthews, Arif Shaon, Juan Bicarregui, Catherine Jones, Jim Woodcock,
Esther Conway, Towards a methodology for software preservation (2009).

[16] Quan Pham, Tanu Malik, Ian T. Foster, Using provenance for repeatability,
in: USENIX NSDI Workshop on Theory and Practice of Provenance (TaPP),
2013.

[17] Quan Pham, Tanu Malik, Ian T. Foster, Auditing and maintaining provenance
in software packages, in: International Provenance and Annotation Workshop
(IPAW), 2014.

[18] Quan Tran Pham, A Framework for Reproducible Computational Research, PhD
thesis, The University Of Chicago, 2014.

[19] John R. Rice, Ronald F. Boisvert, From scientific software libraries to problem-
solving environments, IEEE Comput. Sci. Eng. 3 (3) (1996) 44–53.

[20] Hendrik Schöneberg, Hans-Günter Schmidt, Winfried Höhn., A scalable,
distributed and dynamic workflow system for digitization processes, in:
Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries,
ACM, 2013, pp. 359–362.

[21] Ivan Subotic, Lukas Rosenthaler, Heiko Schuldt, A distributed archival network
for process-oriented autonomic long-term digital preservation, in: Proceedings
of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries, ACM, 2013,
pp. 29–38.

[22] Douglas Thain, Miron Livny, Parrot: an application environment for data-
intensive computing, Scalable Comput. Pract. Exp. 6 (3) (2005) 9–18.


