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a b s t r a c t

The reproducibility of computational environmental models is an important challenge that calls for open
and reusable code and data, well-documented workflows, and controlled environments that allow others
to verify published findings. This requires an ability to document and share raw datasets, data pre-
processing scripts, model inputs, outputs, and the specific model code with all associated dependencies.
HydroShare and GeoTrust, two scientific cyberinfrastructures under development, can be used to
improve reproducibility in computational hydrology. HydroShare is a web-based system for sharing
hydrologic data and models as digital resources including detailed, hydrologic-specific resource meta-
data. GeoTrust provides tools for scientists to efficiently reproduce and share geoscience applications.
This paper outlines a use case example, which focuses on a workflow that uses the MODFLOW model, to
demonstrate how the cyberinfrastructures HydroShare and GeoTrust can be integrated in a way that
easily and efficiently reproduces computational workflows.

© 2018 Elsevier Ltd. All rights reserved.

Software availability

The software created in this research is free and open source. The
software information and availability are as follows:

Developers: Bakinam T. Essawy, Daniel Voce, and Wesley Zell
Programming language: Python, Bash
GitHub link: https://github.com/uva-hydroinformatics-lab/AWS_

MODFLOW

1. Introduction

The challenge of creating more open and reusable code, data,
and formal workflows that allow others to verify published findings
is gaining attention in the scientific community (Borgman, 2012;
David et al., 2016; Gorgolewski and Poldrack, 2016; Meng et al.,
2015; Peng, 2011; Qin et al., 2016). Reproducibility is important
for both verifying previous results as well as building upon the

prior computational research of other scientists. Although we can
achieve standard reproducibility for most computational research,
there are certain cases in which reproducibility remains difficult to
achieve. This challenge is not caused only by technical barriers but
also by limited documentation of the research to be replicated and
the potentially complex requirements for how the software is
packaged, installed, and executed (Piccolo and Frampton, 2016).
Recent papers have argued the need and have proposed approaches
to improve reproducibility, both within geosciences generally and
the hydrologic sciences specifically (David et al., 2016; Essawy et al.,
2016; Gil et al., 2016; Hutton et al., 2016). Reproducibility of
research is said to be achieved if the scientist was able to preserve
sufficient computational artifacts in a way that can be replicated in
the future (Meng et al., 2015).

Here we consider reproducibility to be the ability to repeat in
the same exact form and then document and share digital resources
previously used to complete an analysis. These digital resources
include (1) initial raw, unprocessed datasets; (2) data preprocessing
scripts used to clean and organize the data; (3) model inputs; (4)
model results; and (5) the specific model code along with all of its* Corresponding author.
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dependencies. Fig. 1 shows a typical conceptual workflow that
needs to be repeated for computational reproducibility. These data,
software, and environments are often integrated intoworkflows (as
computational experiments) that allow scientists to re-run an
analysis from raw initial datasets and obtain the same model
results.

There are different requirements for reproducibility depending
on the nature of the research. For example, laboratory experiments
require capturing descriptive information about protocols and
methods, leading to empirical reproducibility. Computational
reproducibility, on the other hand, requires descriptive information
about the software and workflow details of model-based research
(Stodden, 2013). Any workflow that is computationally reproduc-
ible must be general and able to address the heterogeneous land-
scape of tools and approaches used within the target scientific
community. In hydrology, scientists use a large variety of compu-
tational models, many of which have decades of development effort
behind them (Singh et al., 2002). Computational modeling can
often require a significant amount of effort and time to prepare
model inputs and to calibrate and validate model parameters.
Depending on the complexity of the system being modeled and the
experience of the modeler, these aspects can make reproducing
computational hydrologic experiments particularly challenging.

Addressing the challenges for achieving reproducibility in
computational workflows has been the topic of many studies. Until
now, most approaches have either focused on the logical preser-
vation (i.e., sufficient documentation of a workflow and its com-
ponents to allow for reproduction later on) or physical preservation
(i.e., workflow conservation by packaging all of its components
allowing identical replication) (Santana-Perez et al., 2017). It is hard
to achieve a high level of reproducibility while using one of these
approaches in isolation; rather, the integration of both physical and
logical preservation is required to achieve a high level of repro-
ducibility. Some efforts have been made to integrate both logical
and physical preservation for computational workflows, such as the
Topology and Orchestration Specification for Cloud Applications
(TOSCA). The TOSCA framework supports documentation for both
the top-level structure of the abstract workflow and the execution
environment details (logical). TOSCA also provides packaging
functionality for the workflow (physical) (Qasha et al., 2016). In a
similar way, our approach provides both logical and physical
preservation. However, the functionality is extended to allow for
automated creation, documentation, publication, and cloud-based
execution of scientific workflow packages.

This research presents a solution for achieving a higher level of
reproducibility by using GeoTrust's Sciunit-CLI tool and HydroShare.
HydroShare (http://www.hydroshare.org) and GeoTrust (http://
geotrusthub.org) are two new cyberinfrastructures under active
development that aim to improve reproducibility in computational
hydrology. The methods described in this paper can be used to

assist scientists to more easily repeat, reproduce, and verify a
computational experiment (Malik, 2017). This method goes beyond
open source and simply shared by allowing portability in different
hardware and software environments and reproducible analyses
with different datasets. This level of reproducibility is not easily
achieved by using HydroShare or GeoTrust in isolation. For
example, GeoTrust does not provide a community of users who can
verify analyses or the variety of datasets that are required for
verification; HydroShare, however, does provide these. Similarly,
while HydroShare simplifies the process of sharing code, data, and
descriptive metadata, it does not address the challenge of sharing
the computational environment required for the workflow and
then repeating the computational workflow with different data-
sets. This paper presents the design and implementation of a
workflow that takes advantage of the complementary strengths of
the two systems. HydroShare is used to share key digital resources
in the workflow, while GeoTrust is used to capture, encapsulate,
and make portable model execution. An example application of the
approach is presented using MODFLOW-NWT, a version of the
United States Geological Survey's groundwater model, MODFLOW
(Niswonger et al., 2011).

The remainder of the paper is organized as follows. First, addi-
tional background on the HydroShare and GeoTrust projects is
provided. This background section is meant to orient readers on key
aspects of these projects. Next, the methodology section shows the
system design and the use case application for the MODFLOW-
NWT model. In the results section, the system implementation of
the HydroShare and GeoTrust integration approach is presented
and demonstrated by using the use case results as an example
application. Finally, a discussion and conclusions section summa-
rizes the key aspects of the approach and outlines opportunities for
future research to advance on known limitations of the approach.

2. Background

2.1. HydroShare

HydroShare is an open source web-based system developed for
hydrologic scientists to easily share, collaborate around, and pub-
lish all types of scientific data and models including detailed,
hydrologic-specific resource metadata (Tarboton et al., 2014a,
2014b). HydroShare has been developed with the support of the
United States National Science Foundation (NSF). Following the
completion of the original NSF grant, the Consortium of Univer-
sities for the Advancement of Hydrologic Sciences Incorporated
(CUAHSI) (also funded by the NSF) assumed long-term support for
HydroShare's operation and maintenance. In HydroShare, digital
content is stored and referred to as a “resource”. Each resource is a
unit used for management and access control within HydroShare.
Every resource has a resource type (Horsburgh et al., 2015).

Fig. 1. A typical conceptual workflow that needs to be repeated for computational reproducibility. Dashed lines indicate processes for model calibration that are not discussed in this
study.
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HydroShare assigns a unique identifier for each newly created
resource; this identifier is known as the Resource ID. The “generic”
resource type supports the Dublin Core metadata standard (Weibel
et al., 1998) and more specific resource types expand on this met-
adata standard for well-defined data types. For example, “Model
Operating System” is one of the extended metadata terms for the
“Model Program” resource type, which is used for sharing
computational model programs in HydroShare (Morsy et al., 2017).

HydroShare provides a Representational State Transfer (REST)
Application Program Interface (API) that allows third-party appli-
cations to interact with HydroShare resources. (https://github.com/
hydroshare/hydroshare/wiki/HydroShare-REST-API#design-
document). Developers can create web-apps that use HydroShare's
REST API to interact with HydroShare resources. Web-app de-
velopers can catalogue their apps in HydroShare via the “Web-app”
resource type (Swain et al., 2016). When a developer creates a web-
app resource in HydroShare, the developer specifies which
resource types are relevant to the web-app and the URL that will be
called when the web-app is executed from the landing page of the
resource that the web-app is acting on. After a developer adds a
web-app as a resource in HydroShare, HydroShare users can
execute that app through HydroShare's web interface to act on
relevant resources that they have access to.

Although there are several different resource types supported
by HydroShare, two of the main resource types relevant to this
paper deal with computational models. HydroShare divides
computational models into two separate but linked resource types:
a) the model program and b) the model instance. The model pro-
gram includes the software for executing a specific instance of the
model and the model instance are the input files required for
executing the model and, optionally, the output files after a model
instance has been executed by a model program (Horsburgh et al.,
2015; Morsy et al., 2014, 2017). Additionally, a Model Instance
Resource type can be linked to a model program resource type
using the “ExecutedBy” term, assisting with reproducibility of the
model instance (Morsy et al., 2017). Other HydroShare resource
types used in this paper include the Composite resource type,
which allows uploading metadata files at both file and resource
level; the collections resource type, which stores any number of
individual resources within HydroShare as a single, aggregate
resource; and the web-app resource type, which is the Digital
content stored in HydroShare and referred to it as a “resource”.

2.2. GeoTrust

The GeoTrust project, also funded by the NSF through their
EarthCube program, aims to create cyberinfrastructure that assists
scientists to efficiently reproduce and share geoscience applica-
tions used in research (Malik et al., 2017). The project has done this
primarily by developing the concept of a “sciunit” (https://sciunit.
run), an efficient, lightweight, self-contained digital package of an
ad-hoc computational workflow that can be repeated in other en-
vironments. The sciunit advances the concept of a research object,
an aggregation of digital artifacts such as code, data, scripts, and
temporary experiment results associated with a research paper.
The sciunit provides an authoritative and far more complete record
of a piece of research (Hai et al., 2017). To create, maintain, and
publish sciunits, the GeoTrust project has developed a software tool
for Linux environments called Sciunit-CLI.

One of the main advantages of a sciunit is its portability, which
allows it to be easily run on various computing environments. To
accomplish this, Sciunit-CLI creates sciunits using Docker, a widely
used containerization software. Docker wraps a piece of software in
a complete filesystem that contains everything needed to run the
software, including code, software runtime, system tools, and

system libraries in a Docker container (Owsiak et al., 2017). By
leveraging Docker, sciunits are packaged with all of their de-
pendencies. In this way, any sciunit can be executed in an envi-
ronment in which both Docker and the Sciunit-CLI tool are installed
regardless of other computer configurations (Hai et al., 2017). This
capability eliminates the burden of configuring a running envi-
ronment with all software dependencies, which can be complex, in
order to reuse a scientific workflow and reproduce its results.

In addition to ensuring the portability of sciunits, Sciunit-CLI
automates some documentation of the workflow packaged into a
sciunit, including environment dependencies. The automation of
documenting all code, data, and environment dependencies alle-
viates what is typically a burdensome task for scientists. Impor-
tantly, Sciunit-CLI also records retrospective provenance of the
workflow execution, which can be used for re-running containers
(Pham et al., 2014). Because it contains all of the required de-
pendencies, the sciunit can be rerun, and the outputs reproduced,
using any other deployment configuration that also has Sciunit-CLI
installed. When Sciunit-CLI creates a sciunit, it includes three types
of metadata: annotation metadata (populated by the user) and
provenance and version metadata (generated automatically by
Sciunit-CLI).

Fig. 2 shows an example user interaction with the Sciunit-CLI
tool. The user runs the create command and provides a name,
“Model” in the example. To create a container or a package within
the sciunit, the user runs the package command and provides the
workflow name (e.g., “workflow.sh”) along with any inputs for the
workflow (e.g., “data”). The user application can be written in any
combination of programming languages, and many containers can
be created within the same sciunit.

Sciunit-CLI works in a distributed fashion, similar to the Git
version control philosophy, such that the sciunits are stored only
locally until explicitly sharedwith a remote repository. This method
of operation allows distributed collaborators to work offline on the
same sciunit. When a user is ready to share, they can publish the
sciunit container to any remote web-repository using the publish
command. To use the publish command, the remote repository
must be configured within the Sciunit-CLI tool. This command line
prompts first-time users to provide their remote web-repository
credentials. The remote repository reads the container's contents,
stores the container's digital artifacts in the appropriate remote
sciunit, and associates the container with an appropriate cloud
execution server onwhich it can potentially re-execute. In our case,
we used HydroShare as the remote repository to publish our
packaged sciunit in order to use HydroShare's support for rich
metadata and its ability to integrate third-party applications. The

Fig. 2. A example user interaction with sciunit client.
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latter allowed us to automate the cloud-based execution of this
packaged sciunit.

3. Methodology

3.1. System design

The combined GeoTrust and Hydroshare system is designed to
connect a repeatable computational workflowwith its input data in
a reproducible way. As such, both the computational workflow and
the data must be stored in a public repository that has extensive
metadata support. In addition to public accessibility of the data and
the computational workflow, the execution of the workflow must
also be made publicly available to ensure reproducibility and
transparency. The technology for producing a repeatable compu-
tational workflow is provided by the GeoTrust Sciunit-CLI,while the
technology for public storage and metadata support is provided by
CUAHSI's HydroShare. Therefore, the main design aspect of this
work consisted of designing a publicly accessible method of
execution in which sciunits built with the Sciunit-CLI and stored in
HydroShare could be executed using input data also stored in
HydroShare. This was done in two parts. The first was to build in
functionality for publishing a sciunit through HydroShare. The
second part was to automate the execution of a sciunit from
HydroShare using HydroShare web-apps.

3.1.1. Integrating Sciunit-CLI with HydroShare
Fig. 3 shows an activity diagram of the system design for inte-

grating GeoTrust Sciunit-CLI and HydroShare. To achieve this inte-
gration, Sciunit-CLI was extended to support sharing of sciunits
through HydroShare. This functionality was implemented using
HydroShare's REST API. To publish their sciunit on HydroShare, the
user must provide valid HydroShare credentials. In the current
implementation, the sciunit resource is published on HydroShare
as a Composite Resource Type. Once the resource for the sciunit is
created within HydroShare, the user can log into HydroShare and
edit the metadata fields to more fully describe the sciunit resource.

3.1.2. Automating sciunit execution through HydroShare
Integrating the cloud-based sciunit execution from the

HydroShare user interface was done using a HydroShare web-app.
This web-app directs Hyper Text Transfer Protocol (HTTP) request
to a web server where sciunits can be executed. The web-app
configured to run a particular sciunit can be accessed through the
“Openwith” button on the landing page for the resource that stores
the raw input data. When the scientist clicks on the web-app
button from the “Open with” menu, an HTTP request containing
the raw input data's resource ID will be sent to the server. With the
resource ID, the HydroShare REST API can be used to download the
raw input data and the sciunit to the server. The server can then
execute the sciunit using the raw data, and return the output to the
scientist as a new HydroShare resource.

Fig. 4 shows the steps done in a generic form for the integration
between the two cyberinfrastructures, GeoTrust and HydroShare,
to improve reproducibility by automating the execution of the
published sciunit. The figure shows how the “Open with” app will
perform a HTTP GET request to a remote server, which has already
been configured with the Sciunit-CLI. This automation process is
done using a Python script created on the web server machine. This
Python script uses the flask library to act as a web server with
NGINX (https://www.nginx.com) used as a proxy to forward all
HTTP requests from the user browser to the Python script, which
can handle multiple users simultaneously. The Python script is
using the POST request to create a new resource and upload the
output generated from running the sciunit on this resource.
Simultaneously, a webserver is running on the remote machine,
which handles the HTTP request and automatically executes a Py-
thon script. This script uses the HydroShare user authentication to
download the input data from the resource and downloads the
Composite resource that includes the sciunit container. Once both
resources are downloaded, the resources are unzipped and moved
to the working directory for the analysis. The Sciunit-CLI executes
the downloaded sciunit package. After the sciunit is executed, a
new resource is created in HydroShare and the output from the
Sciunit-CLI execution is uploaded into this new resource. A new
collection resource is also created on HydroShare to group all re-
sources that were included during this execution. In this paper we
used HydroShare API. Our Python script uses the Python Client
Library for the REST API (http://hs-restclient.readthedocs.io/en/
latest).

Fig. 3. Activity diagram showing creating a sciunit using GeoTrust and publishing that sciunit on HydroShare.

B.T. Essawy et al. / Environmental Modelling & Software 105 (2018) 217e229220



3.2. Use case application

A use case application was designed to demonstrate the inte-
gration of GeoTrust Sciunit-CLI and HydroShare. This integration
allows GeoTrust to package and publish a sciunit through Hydro-
Share, after which HydroShare automates the execution of this
sciunit. Execution of the packaged sciunit through HydroShare was
demonstrated using EC2 instances from Amazon Web Services
(AWS). A Linux-based, micro-sized machine (t2) was used for
prototyping and demonstration purposes; this machine had 1 Gb of
memory, 1 vCPU, 32 Gb of Solid State Drive (SSD)-based local
instance storage, and a 64-bit platform (“Amazon EC2 Instances,
2015”). This use case consisted of a workflow used for pre-
processing model input data, running a computational model, and
handling the model outputs. The computational model used for the
use case was MODFLOW-NWT.

3.2.1. MODFLOW-NWT use case
MODFLOW-NWT is a standalone version of MODFLOW, a

commonly used groundwater model (Niswonger et al., 2011). The
concept of “packages” is key to the modularity of the different
versions of MODFLOW (including MODFLOW-NWT); packages are
input files that define some individual component of the
groundwater-flow conceptual model or specify the solution
method used for the flow equation that is collectively formulated
from the individual components. For example, the basic (BAS) and
discretization (DIS) packages define the spatial and temporal
framework of the model, including the grid dimensions and the

location of active and inactive grid cells, while the recharge (RCH)
package defines the spatial-distribution and rate of recharge to the
water-table. For our use case using MODFLOW-NWT, the Newton-
Raphson (NWT) package defines the variables required to imple-
ment the Newton-Raphson solution method.

For this study, MODFLOW-NWT was used to simulate the
shallow groundwater flow in the James River watershed upstream
of Richmond, VA, USA. The model includes recharge to the water
table, subsurface flow through the saturated zone, and base-flow
discharge to surface water bodies including the James, Rivanna,
and Hardware Rivers and several smaller-order streams. Depth-
integrated effective transmissivity was assumed to be constant
throughout the active model area and spatially-distributed
recharge was derived from the national recharge dataset devel-
oped by Reitz et al. (2017). Base-flow dischargewas simulated using
the MODFLOW drain (DRN) package with all drain elevations (i.e.,
the water-table elevation required to discharge base-flow to a
receiving stream) extracted from the National Elevation Dataset.
The model runs to completion and is unconstrained by calibration;
as such it is to be only used as an example for the workflow pro-
cesses described in this paper (i.e., no hydrologic or management
conclusions were drawn from the results of the model). This
workflow could be extended to include calibration (Fig. 1). For
example, a HydroShare resource for a parameter estimation pro-
gram such as PEST (Doherty and Hunt, 2010) could be created and
included in the sciunit container. Similarly, the pre-processing
script could include data retrieval from web services such as the
USGS water services API (https://waterservices.usgs.gov) and the

Fig. 4. The generic implementation for automating the execution of the published sciunit from the HydroShare web-app.
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automated generation of PEST input files.
The FloPy library was used to create theMODFLOW-NWTmodel

from raw input datasets (Bakker et al., 2016). FloPy is a library of
Python modules that allows scripting of the various steps in
MODFLOW model development, execution, and analysis. By
combining FloPy with GeoTrust and HydroShare, the workflow
used to create and execute MODFLOWmodel (e.g., the steps shown
in Fig. 1) can be stored within a reproducible container with
descriptive metadata in HydroShare.

4. Results

4.1. System implementation

This section describes how a sciunit package on HydroShare can
be deployed from a remote server. The system was implemented
using the following steps. First, the script downloads raw input data
and the sciunit resources from HydroShare. Second, the script will
unzip both the data and sciunit, pass the data to the sciunit as an
argument (this is how the sciunit accepts the input data), and then
run the sciunit with the downloaded data. Last, after the execution
is completed, the Python script will upload the results to Hydro-
Share by using a POST request to create two new resources: one for
the sciunit output, which has the MODFLOW-NWT Model Instance
Resource type, and the other the collection resource that will
include all the resources used within the study. The script then
returns the command status (including any errors) to the user.

4.2. Use case results

A digital workflow (bash script) was packaged into a sciunit
using the Sciunit-CLI tool. The digital workflow runs a Python script
to prepare theMODFLOW-NWT input data files and then executes a
single run of the model. Fig. 5 shows the components of the
packaged digital workflow.

Fig. 6 outlines the first steps taken in the process to start and
create a new sciunit through the GeoTrust Sciunit-CLI tool for the
example workflow while Fig. 7 shows the execution and packaging
of the digital workflow into a sciunit package. This package com-
mand traces all dependencies for the workflow and includes them
in a single Docker file. Fig. 8 shows how the publish command is
used to publish a sciunit package on HydroShare. If this is the user's
first time connecting to HydroShare, Sciunit-CLI will ask for
HydroShare user credentials, otherwise, the credentials stored will
be used. Once the package is published, metadata can be provided
by the user via the HydroShare Graphical User Interface (GUI).
Future implementations of the Sciunit-CLI may expand this func-
tionality by automatically populating more detailed metadata for
describing resources.

The newly created resource on HydroShare is a Composite
Resource Type. This resource type allows the resource to include
multiple files without file format limitations and with metadata
associated at a file level within the resource. The Composite
resource contains two files. The first is the provenance metadata
file created while packaging the workflow; this metadata file

contains information concerning the creation and version history of
the managed data. The second file is the zipped package for the
sciunit itself.

Once the sciunit is available as a HydroShare resource, Hydro-
Share's integrationwith third-party web apps is used to execute the
sciunit. In order to store data and make it accessible to be used as
the input required by the sciunit, we made a new model instance-
type resource titled “ModflowNwtRawData” (Essawy, 2018b). We
also created a web-app resource titled “GeoTrust” (Essawy, 2018a).
This web-app pointed to the AWS-EC2 instance where the Sciunit-
CLI tool and our Python script were installed. The connection be-
tween the HydroShare resource and the web server was made by
providing the web server's URL as the “App-launching URL Pattern”
metadata term in the resource. The GeoTrust web-app resource is
linked to the ModflowNwtRawData resource by the Supporte-
dResourceType metadata property. This metadata property was set
to include the Composite Resource Type, which allowed the web-
app to appear in a drop-down list in the “Open with” menu on
the ModflowNwtRawData resource landing page. Fig. 9 shows the
Model Instance Resource type that includes the raw data, and the
web apps linked to this resource type to automate the sciunit
execution.When the GeoTrust web-app on this page is selected, the
HTTP request is sent to server and the workflow is executed. The
output is written back to HydroShare as a new resource with the
MODFLOW Model Instance Resource type. This resource type is
used because the resource can be executed by a MODFLOW model
program and it allows for adding extended metadata specific to
MODFLOW (Morsy et al., 2017).

Fig. 10 presents the activity diagram for the steps that occur
when the “Open with” button is clicked and the “GeoTrust” app is
selected on the ModflowNwtRawData resource landing page. The
“GeoTrust” app will perform an HTTP GET request to the AWS-EC2
machine, which has already been configured with the Sciunit-CLI.
Thewebserver running on the AWS-EC2machine handles the HTTP
request and automatically executes a Python script. The script uses
the HydroShare user authentication to download both the raw data
of the ModflowNwtRawData resource and the sciunit container
included within the ModflowNwtSciunit resource (Essawy, 2018c).
Once the ModflowNwtSciunit and the ModflowNwtRawData re-
sources are downloaded, the script unzips the resources andmoves
them to the working directory for the analysis. The Sciunit-CLI tool
executes the downloaded sciunit package, which pre-processes the
raw input data for the model and executes the MODFLOW-NWT
model. After the model is executed, a new resource is created in
HydroShare with the MODFLOW Model Instance Resource type
named ModflowNwtSciunitOutput (Essawy, 2018d) and the output
from the Sciunit-CLI execution is uploaded into this new resource. A
new collection resource is also created on HydroShare to group all
the resources: the ModflowNwtRawData generic Model Instance
Resource (the resource type is a generic model instance because theFig. 5. Component of the packaged digital workflow.

Fig. 6. The creation of a new sciunit through the GeoTrust Sciunit-CLI tool for the use
case.

Fig. 7. Execution of the use case workflow through sciunit to create a package.
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data uploaded have no specific metadata or format that could be
tied to a specific resource type), theweb-app GeoTrust resource, the
ModflowNwtSciunit, MODFLOW Model Instance Resource, the
ModflowNwtSciunit Composite resource, and the Mod-
flowNwtSciunitOutput resource that includes the output resulting
from executing the sciunit package.

Fig. 11 shows HydroShare user “My Resources page” after using
the “Open with” action button on the GeoTrust web-app on the
ModflowNwtRawData resource for the online execution. Two new
resources are created. The first resource in the workflow is the
ModflowNwtSciunitOutput resource, which includes the input files
for the MODFLOW-NWTmodel program that are prepared through
the preprocessing script and the output from the model run. This
resource is given the MODFLOW Model Instance Resource type,
because the resource has the inputs that are required by the
MODFLOW-NWT model. This resource type allows for extended
metadata specific to a MODFLOW model instance. The second
resource created is the ModflowNwtCollection resource (Essawy,
2018e), which includes all the resources used in the online execu-
tion for the MODFLOW-NWT. This provides a grouping of resources
used for an analysis and allows the user to share or download this
collection of resources more easily.

Fig. 12 shows the output files within ModflowNwtSciunitOutput
resource as viewed on this resource's HydroShare landing page. The
resource contains the output generated from running the sciunit
that prepares the model input for MODFLOW-NWT and the output
from running the MODFLOW-NWT model program itself. The
MODFLOW Model Instance Resource type includes extended met-
adata terms specific for MODFLOW. In this use case the model has
eight packages. In addition to the packages already described, this

model instance includes: the output control (OC) package, which
specifies how themodel output is written; the upstream-weighting
(UPW) groundwater flow package, which describes the system
properties (e.g., transmissivity/conductivity); and the one output
listing file (LIST), which contains all the information about the
current run (e.g., stress period, time step and the number of active
and inactive cells, the recharge, drains, and any errors). The name
file (NAM) specifies the name of the input and output files for the
model instance.

Additional metadata associated with the MODFLOW output
resource is divided into four categories: 1) Authorship, 2) Related
resources, 3) Resource Specific, and 4) Web Apps. Fig. 13 shows the
“Related Resources” metadata. Here all resources linked to the
MODFLOWoutput resource through formal relationships are listed.
In this case, the MODFLOW output resource is linked to the Mod-
flowNwtRawData resource through the “Derived From” relation-
ship and to the MODFLOW-NWT resource through the
“isExecutedBy” relationship. Fig. 14 shows the “Resource Specific”
metadata. These are non-null metadata terms that apply only to the
MODFLOW Model Instances' such as grid attributes, solver, and
boundary condition package choices. Additional metadata terms
not previously populated by the user can be populated later within
the edit mode and will appear in this section once populated.

Fig. 15 shows details for the resulting ModflowNwtCollection
resource as viewed on this resource's landing page. The collection
resource contains four sub-resources: 1) the ModflowNwtRawData
resource with the raw input data ready to be prepared for the
MODFLOW-NWT model engine; 2) the ModflowNwtSciunit
resource with the sciunit pre-processing workflow, which also in-
cludes running the MODFLOW-NWT model; 3) the

Fig. 8. Publishing the use case sciunit to HydroShare.

Fig. 9. The raw data within the Model Instance Resource type, and the web apps linked to this resource type to automate the sciunit execution.
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ModflowNwtSciunitOutput resource, which stores the output
generated from running the sciunit workflow; and 4) the GeoTrust
web app used to perform the online model execution using AWS-

EC2. By organizing all these resources into a single collection, it is
possible to have one landing page where users can, referring back
to the stated goals in the introduction of this paper, view, obtain,

Fig. 10. Activity diagram showing the steps for the online execution of the sciunit through HydroShare.

Fig. 11. HydroShare user My Resources page after using the GeoTrust web app for the online execution.
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and execute (1) raw initial datasets, (2) data preprocessing scripts
used to clean and organize the data, (3) model inputs, (4) model
results, and (5) the specific model code along with of all its de-
pendencies used for a computational analysis.

5. Discussion and conclusions

In this paper, we demonstrated how HydroShare and GeoTrust
can be integrated to easily and efficiently package, share, and
publish model workflows. MODLFOW-NWT was used as an
example application to demonstrate the functionality provided by
these cyberinfrastructures for creating open, reusable data analysis
and cloud-based model execution services. The approach showed
how containers built using GeoTrust tools can be shared as
HydroShare resources. A cloud-based service was created to

automatically retrieve raw input data from HydroShare, execute a
sciunit container that both prepares and runs a MODFLOW-NWT
model, and share the results on HydroShare using a MODFLOW
Model Instance Resource type. All the resources are aggregated in
HydroShare into one collection resource with domain-specific
metadata.

The integration of scientific cyberinfrastructures such as the
HydroShare and GeoTrust projects can improve reproducibility in
computational hydrology. New MODFLOW models can be directly
built from unprocessed input data (e.g., land-surface DEMs or
stream-network shapefiles) by running a sciunit container that
includes automated data preparation steps implemented using the
FloPy Python package. The container is run online using AWS re-
sources initiated directly through the HydroShare user interface. A
particular advantage of this approach is that the GeoTrust Sciunit-

Fig. 12. The output files within the ModflowNwtSciunitOutput resource landing page in HydroShare.

Fig. 13. The ModflowNwtSciunitOutput Related Resources metadata tracking the resource's provenance within HydroShare.
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Fig. 14. ModflowNwtSciunitOutput specific metadata capturing key MODFLOW model properties.
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Fig. 15. The collection resource that includes all resources used within the study.
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CLI tool provides scientists a method for efficiently creating con-
tainers for script-driven modeling workflows. Thus, the general
approach demonstrated here for the MODFLOW-NWT use case
could be applied for any workflow that can be automated and that
is compatible with Docker requirements. For example, in prior
work we have constructed pre- and post-processing workflows for
the Variable Infiltration Capacity (VIC) hydrologic model (Liang
et al., 1996) that could directly benefit from this method for pack-
aging, sharing, and publishing resources (Billah et al., 2016; Essawy
et al., 2016). These containers are efficient, lightweight, self-
contained packages of computational experiments that can be
repeated or reproduced regardless of deployment configurations.

In addition to integration with HydroShare for storing and
publishing a sciunit, cloud resources were used to execute sciunits
directly through the HydroShare user interface. While only AWS
was presented, we evaluated as part of this work three different
cloud computing services: EarthCube Integration and Testing
Environment (ECITE), CyVerse, and Amazon Web Services (AWS).
ECITE and CyVerse are funded by NSF and both are under active
development. One main advantage for using ECITE or CyVerse is
that they are free of charge for scientific studies. AWS, though not
free, does offer a competitive grant program for researchers. From
our experience, the AWS platform made the process of obtaining
computer resources the simplest when compared to ECITE and
CyVerse. The AWS user simply logs in to the console, selects the
type of the machine needed, and launches it. When using ECITE, we
had to contact the developer and ask for an instance with the
required specifications and a short paragraph summarizing the
project we are working on to justify the allocation of compute re-
sources. We also needed to contact the developer each time we
wanted to open a port (e.g., port 22 to SSH or port 80 for HTTP). The
service did not support Elastic IPs like AWS, so each time we
restarted an instance and wanted to use SSH to access to the ma-
chine, we needed to report the IP address used to access the ma-
chine to the developer to add this address to the security rules.
CyVerse is a more mature service, but allows each user only a
certain allocation of computational time. Once the user exceeds this
allocation the instance is suspended and the user needs to request
more time from the administrators. This feature was problematic
for our use case of a continually available cloud-based resource for
online model execution. For these reasons, we used AWS-EC2 for
much of the testing work described in this paper, but ECITE and
CyVerse are in active development and will likely be good options
for this use case in the future.

While this approach shows great promise, it is not without
limitations: (1) the Sciunit-CLI tool must be installed in order to re-
execute a sciunit container and (2) HydroShare lacks methods for
uniquely identifying and managing web-app resources that will be
needed as the number of these resources continues to increase.
Regarding the latter limitation, without amore organized structure,
naming conflicts could cause confusion when using the “Open
with” button over which app is to be requested. Also, this work
does not fully explore computational challenges associated with
the proposed methodology. Using cloud services like AWS provides
the opportunity for scalability as more users are added. For
example, this solution used small EC2 instances for prototyping.
Future work could explore AWS EC2 Container Service (ECS) as an
alternative for a more scalable solution to support multiple con-
current users. Data movement between HydroShare and AWS is
another potential issue as data volumes increase, which is not
uncommon for hydrologic modeling. HydroShare is built on iRODS
(Integrated Rule-Oriented Data System), which includes the ability
to interface with AWS S3 storage resources. Future work could
explore using this functionality to automate the movement of large
files between HydroShare and AWS to support computation within

AWS and still maintain access through the HydroShare user inter-
face. iRODS is specifically designed to handle such data federation
needs and should provide a robust solution for managing the large
data flows common in hydrologic modeling. Lastly, future work
should explore scaling of the general approach presented here to
use cases in which multiple sciunits are available for execution
within a remote, cloud-based resource. In this case, a user could
select from available sciunits to process input data stored with
HydroShare, making for a potentially very powerful general
approach applicable to many different modeling and analysis use
cases that require remote data processing.
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