
Using Provenance for Generating Automatic Citations

Dai Hai Ton That, Andrew Youngdahl, Alexander Rasin, Tanu Malik
School of Computing, DePaul University, Chicago, IL, 60604, USA

{dtonthat, ayoungdahl, arasin, tmalik1}@depaul.edu

Abstract
When computational experiments include only datasets, they
could be shared through the Uniform Resource Identifiers
(URIs) or Digital Object Identifiers (DOIs) which point to
these resources. However, experiments seldom include only
datasets, but most often also include software, execution re-
sults, provenance, and other associated documentation. The
Research Object has recently emerged as a comprehensive
and systematic method for aggregation and identification of
diverse elements of computational experiments. While an
entire Research Object may be citable using a URI or a DOI,
it is often desirable to cite specific sub-components of a re-
search object to help identify, authorize, date, and retrieve
the published sub-components of these objects. In this paper,
we present an approach to automatically generate citations
for sub-components of research objects by using the object’s
recorded provenance traces. The generated citations can be
used “as is” or taken as suggestions that can be grouped and
combined to produce higher level citations.

Keywords Research Object, Provenance Graph, Automatic
Citations, sub-component Citations

1. Introduction
Scientific research relies on the embedded citation of schol-
arly artifacts within publications. As computational experi-
ments become a scholarly artifact that can be shared, reused,
and published, supporting easy and efficient methods for
publishing and citing relevant sub-components (files, com-
puter code, outputs, etc.) of experiments becomes crucial.
Computational experiments are rarely conducted in isola-
tion; an easy and efficient method to cite sub-components of
an experiment can permit authors to give credit where credit
is due, and facilitate re-use of the whole, or parts of the com-
putational experiment in a more comprehensive way.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

TaPP 2018 July 11 - 12, 2018, London, UK

c© 2018 Copyright held by the owner/author(s).

ACM ISBN . . . $15.00

DOI: http://dx.doi.org/10.1145/

The current practice is to cite computational experiments
using a Digital Object Identifier (DOI). Often DOIs are man-
ually created and assigned. Creating and assigning DOIs for
all sub-components of an experiment can be cumbersome.
Recent research (Buneman et al. 2016) has focused on auto-
matically generating citations at a more granular level, par-
ticularly for large databases—users often use parts of the
database for research and so citing the entire database is not
helpful. However unlike databases in a computational ex-
periment not all parts are worthy of being cited, and often
there is lack of a query framework to identify relevant sub-
components. For example, a computational experiment may
consist of a data preprocessing step and depending upon the
quality of pre-processing a user may or may not want to cite
this part of the experiment.

In this paper, we explore how large computational exper-
iments can be automatically cited. In particular, we explore
if provenance associated with an experiment can be used to
generate automatic citations for the experiment. To obtain
provenance we use tools such as Sciunit (Ton That et al.) and
Reprozip (Chirigati et al. 2016) that make it easy to package
computational experiments, share and repeat them. These
tools generate a provenance trace for the experiment, and
provide easy and efficient methods to share experiments on
scholarly exchange websites such as Figshare (Figshare.com
2017).

Using provenance from these traces can be challeng-
ing. In general, associated provenance is fine-grained and
too replete for comprehension. Recent work has shown that
this fine-grained provenance can be effectively summarized
to understand application execution behavior (Yuan et al.
2018). In this paper we assess if available summaries are an
effective method to generate citations. The objective of this
paper is neither to propose a new method to capture exe-
cution traces, nor present a novel summarization algorithm,
but to use available methods to determine if a quality cita-
tion framework can be supported. Such a citation framework
can be useful for tools such as Sciunit used for publishing
workflows.

The rest of this paper is presented as follows. Section 2
presents a framework for automatic generation of citations
for a computational experiment. As part of this framework,
we describe how associated provenance can be summa-

Figure 1. Automatic Generating Citation Framework

rized to generate citations. We compare generated citations
with two real-world use cases in which authors have pain-
stakingly assigned citations to their relevant parts of the ex-
periment in Section 4. Finally, we conclude the paper with
Section 5.

2. A Citation Generation Framework For
Computational Experiments

We define a computational experiment in terms of a research
object—aggregations of digital artifacts such as code, data,
scripts, and temporary experiment results. Research objects
are typically created by a user either manually with explicit
commands such as those used in RO-Manager (RO- 2016) (a
tool that uses the RO-Bundle specification (Soiland-Reyes
et al. 2014)), or automatically by using an application vir-
tualization tool such as Sciunit (Ton That et al.) or Re-
prozip (Chirigati et al. 2016). The advantage of using Sciunit
or Reprozip is that a reusable research object is automati-
cally created by simply executing the experiment. In addi-
tion, a provenance trace of the computational experiment is
immediately available.

This provenance trace is a retrospective trace describing
actions that lead to interactions between processes and files,
and documenting the flow of data. In general it is fine-
grained and too replete for human consumption. Figure 1
describes the architecture of an automatic citation generation
framework that uses this available provenance to generate
citations. The architecture consists of the following:

1. Record a provenance traces in the research object of the
application execution and build a retrospective graph.

2. Summarize the available retrospective graph; this step
provides potential citable sub-component groupings.

3. Use the descriptions of the package sub-component
groupings that records all the information about the sub-
component to create a citation.

4. Adjust the suggested citations.

While the architecture is depicted in context of the Sciunit
package, an automatic citation framework may use other
methods to generate execution traces.

3. Summarizing Provenance for Citations
A good citation cites resources critical to the experiment as
specifically as possible, while avoiding redundancy and also
keeping the number of citations to a human readable amount.
To achieve this goal, we use the following set of rules to
summarize provenance:

We model the generated provenance as a graph G =
(V,E) where V and E are sets of nodes and edges respec-
tively. Graph nodes are classified into two types of node:
Activity node and Entity node according to processes or
files in the provenance graph.There are three types of edges
(i.e., used, wasGeneratedBy and wasInformedBy) with
respect to three types used in W3C PROV standard.

Create provenance summaries according to the following
rules:

Rule 1. Common type (Every node in a group should share
the same type). Given a grouping Φ = {g1, g2..., gk} in G,
∀u, v ∈ gi, then Type(u) = Type(v).

Figure 2. Applying rules on a replete provenance graph to
produce summaries

Rule 2. Similar ancestry (All units (i.e., groups or nodes)
in a group have to share the same ancestry). Given a group
g in G, ∀u1, u2 ∈ g, then Ancestor(e1) = Ancestor(e2).

Rule 3. Isomorphism grouping (All units in a group should
be isomorphic). Given a group g in G, ∀u1, u2 ∈ g, if there is
an edge e1: ∃e1 ∈ E, e1 = (u1, x1) or (x1, u1), then there is
a similar edge e2: ∃e2 ∈ E, e2 = (u2, x2) or (x2, u2), where
nodes: x1, x2 are in the same group in G and Label(e1) =
Label(e2).

Figure 2 shows the effect of applying these rules on a re-
plete provenance graph. The net effect is that grouping based
on these rules often generates summary graphs that resemble
human drawn application workflows. In other words sum-
marizing can be used to obtain prospective provenance from
retrospective provenance. These groupings can also provide
useful means for publication and citation.

Each summary group can contain many elements which
may not be organized hierarchically. To adequately describe
these elements we build a single RDF format 1 document
for each subgroup. These descriptions are then used in cita-
tion generation. For a detailed example of sub-component’s
description, see our technical report (Ton That et al. 2018).

We create human-readable citations in the following for-
mat:

{Author } .{ T i t l e } .{ Year } .{ V e r s i o n } .
{ P u b l i c s o u r c e } .{ G e n e r a t e d Date } .{URL} .

The individual fields (i.e., snippets) of the citation (such
as author, title, date, url) are built via operations on the
RDF description for the sub-component. Particularly, the
snippet information of a citation could be built by using the
following rules:

1 https://www.w3.org/RDF

Figure 3. Generating citation examples: (a) Favor process,
(b) union information and (c) union the highest priority
elements

Rule 4. Favor Activity. The activity element has higher
priority than entity element. It’s citation will be presented.

Rule 5. Union information. The information for citation
to a component is the union of the highest priority elements
within it.

Note that our current graph summarization techniques
produce a graph where activity node and entity node are
always separated into different groups. As this may not be
ultimately desirable and precludes application of our ”favor
activity” rule, a user can send requests (as presented in
the next part) to combine groups, and thus create a sub-
component containing differing types of elements. Figure 3
shows three examples of how the information to build the
citation is collected from the elements in a sub-component.
An example of a generated citation to a sub-component for a
research object (City of Chicago 2017) is shown in Table 1.

3.1 Adjusting the citations
Given available provenance, citations can be automatically
generated whenever a research object is published or re-
published. However, the generated citations may not be to
the author’s liking. To address this possibility our system
allows the user to either split a sub-component or to combine
multiple sub-components by adding a meta description file
with the following syntax:

To combine : @combine <componentName1> . . .
<componentNameN>

To s p l i t : @ s p l i t <componentName>
To rename : @rename <oldName> <newName>

The citations will be updated when the user re-publishes
the container using Sciunit.

Furthermore, as mentioned earlier, our current implemen-
tation does not automatically create sub-component group-
ings consisting of both activity and entity types. If the
author desires to have groupings of this nature the author
may use the combine functionality to create such groupings.

Table 1. Citation examples

FIE

suggested

Schenk T. and Leynes G.. Burglary.Rds, Garbage.Rds, Sanitation.Rds,

Violation dat.Rds. 2018. Version 1.0. Hydroshare.com. Generated 03-21-2018.

https://www.hydroshare.org/resource/5482e7db02dd4be6b73b177b7caeb8b5/package/

5446.

manual

Schenk T. and Leynes G.. Heat map data: Burglary.Rds, Garbage.Rds,

Sanitation.Rds, Violation dat.Rds. 2018. Version 1.0. Hydroshare.com.

Generated 03-21-2018. https://www.hydroshare.org/resource/5482e7db02dd4be6b7

3b177b7caeb8b5/package/heat map data.

DSF

suggested
Sadler J.. Prepare flood events table. 2018. Version 1.0. Hydroshare.com.

Generated 03-21-2018. https://www.hydroshare.org/resource/8db60cf6c8394a0fa24

777c8b936f32d/package/3514.

manual
Sadler J.. Script for processing street flood reports. Version 1.0.

Hydroshare.com. Generated 03-21-2018. http://dx.doi.org/10.4211/hs.38a4ce6296

0942b4ad8398ee58a777cf.

Table 2. Preliminary results in two use cases

FIE DSF

of citations (manually) 11 10
of suggested citations 9 5
of matched citations 8 (∼73%) 4 (∼40%)

4. Preliminary evaluation in two research
object use cases

We applied our method on two research object use cases:
FIE (City of Chicago 2017) and Data-driven street flood
severity modeling in Norfolk (DSF) (Sadler 2018). In both
these studies, citations were generated a-priori by the respec-
tive authors of the study. We used the available computa-
tional experiment accompanying these citations to generate
provenance traces, and summarized them using our tools to
generate sample citations. As shown in Table 2, there are
some differences between citations generated by our frame-
work and those manually made by users. The results are
quite close in FIE (a 73% match), however in DSF only 4 ci-
tations out of 10 match the citations that were built by users.
Some of the citation examples are shown in Table 1. The
automatically generated citations are sightly different from
those manually generated in the Name and URL snippets. The
differences in Name are a result of obtaining names directly
from sub-component element names as opposed to human
authored names. As a correction a user may supply desired
names via a meta data file and re-publish the package. The
differences in URL are due to the differences of publishing
methods between our system (i.e., using Sciunit) and user
(i.e, manually publishing).

5. Conclusion
We have presented our framework for automatic genera-
tion of citations of a container in Sciunit. Our construc-
tion method relies on a summarization technique that de-
composes a retrospective graph into sub-components. Ex-

periments show that the suggested citations for the evaluated
projects are reasonable. However, the full generation process
can still require some manual author intervention to alter ci-
tation content in some cases.

Acknowledgments
The authors would like to thank Tom Schenk and Gene
Leynes for the FIE use case and Jonathan Goodall and Jeff
Sadler for the DFS use case. This work is supported by the
National Science Foundation under grants ICER-1639759,
ICER-1661918, ICER-1440327 and ICER-1343816.
References
https://github.com/wf4ever/ro-manager, 2016. [Accessed

02-May-2017].

P. Buneman, S. Davidson, and J. Frew. Why data citation is a
computational problem. Commun. ACM, 59(9):50–57, 2016.

F. Chirigati, R. Rampin, D. Shasha, and J. Freire. ReproZip:
Computational reproducibility with ease. In SIGMOD, 2016.

City of Chicago. Food Inspection Evaluation.
https://chicago.github.io/food-inspections-evaluation/,
2017. [Online; accessed 05-2017].

Figshare.com. Figshare. https://figshare.com/, 2017. [On-
line; accessed 2-May-2017].

J. Sadler. Data-driven street flood severity modeling
in Norfolk, Virginia USA 2010-2016. HydroShare.
http://www.hydroshare.org/resource/9db60cf6c8394a

0fa24777c8b9363a9b, 2018. [Online; accessed 21-Mar-2018].

S. Soiland-Reyes, M. Gamble, and R. Haines. Research object
bundle 1.0, 2014. [Online; accessed 2-May-2017].

D. H. Ton That, G. Fils, Z. Yuan, and T. Malik. Sciunits: Reusable
research objects. In eScience 2017, Auckland, New Zealand.

D. H. Ton That, A. Youngdahl, T. Malik, and A. Rasin. Tech. report.
https://sciunit.run/papers/TechReport.pdf, 2018.

Z. Yuan, D. H. Ton That, S. Kothari, G. Fils, and T. Malik. Utilizing
provenance in reusable research objects. Informatics, 5(1), 2018.
ISSN 2227-9709. doi: 10.3390/informatics5010014.

