
Using Provenance for Repeatability

Quan Pham1, Tanu Malik2, Ian Foster1,2
Department of Computer Science1,§ and Computation Institute2,¶

University of Chicago§,¶ and Argonne National Laboratory¶
Chicago, IL 60637

Abstract

We present Provenance-To-Use (PTU), a tool that minimizes computation time during repeatability testing. Authors
can use PTU to build a package that includes their software program and a provenance trace of an initial reference
execution. Testers can select a subset of the package’s processes for a partial deterministic replay—based, for exam-
ple, on their compute, memory and I/O utilization as measured during the reference execution. Using the provenance
trace, PTU guarantees that events are processed in the same order using the same data from one execution to the
next. We show the efficiency of PTU for conducting repeatability testing of workflow-based scientific programs.

1. Motivation
Scientific progress relies on novel claims and verifiable
results. However, testing claims and results described in
research papers can be challenging. Increasingly con-
ference committee and journal editors are encouraging
authors to submit their code, data, and software for re-
peatability testing. Repeatability testing improves peer
review by allowing reviewers to: (1) not only read the
ideas in the paper, but validate them by running the
accompanying software; (2) run the software for differ-
ent data and parameters to check robustness; and (3)
determine the limitations and assumptions in the ideas
by testing with more general inputs, or under different
conditions and environments.

However, as documented by recent experiments, re-
peatability testing can be arduous and time consuming
for both authors and testers [1, 2]. Authors have to pre-
pare code, document it, and make explicit rendering of
all dependencies on compilers, operating systems and
hardware. For testers, assessing code and data for re-
peatability can be challenging since documentation is
rarely complete and perfect. But more so, as experi-
ments become data and computation intensive, the test-
ing time can be significant [3].

Recently tools have emerged that aid authors and testers
in making their software and thus experiments repeata-
ble. CDE helps authors package the code, data, and
environment for Linux programs so that they can be run
and deployed on other machines without installation or
configuration [4]. VisTrails provides provenance sup-
port for exploratory computational tasks, maintaining
detailed history information about the steps followed in
during exploration [5]. RunMyCode.org provides re-
peatability and workability of computer codes [6] asso-
ciated with a publication through a companion website.
Finally, SOLE allows an author to associate their code
and data directly with text phrases in the publication,

obviating the need for detailed documentation, yet im-
proving readability and understandability for testers [7].

While these tools are a step towards simplifying repeat-
ability testing for authors, they do not reduce computa-
tion and data processing time for repeatability tests.
Testers may want to repeat only selected portions of an
experiment without having to go through the (often
time-consuming) process of repeating the experiment in
its entirety. For instance, they may want to avoid run-
ning a compute-intensive process that decodes and
splits an MPEG-video, or avoid performing a data-
intensive text scan, or avoid network communication or
transfers. Similarly, they may want to reuse cached
results. However, such selective execution of program
components is difficult or impossible for the tester, un-
less appropriate history and provenance information has
been captured in a previous reference run.

In this paper, we introduce Provenance-To-Use (PTU),
a tool that allows authors to assemble code, data, envi-
ronment, and provenance of an execution into a single
package that can be distributed easily. The resulting
package allows testers to view the provenance graph
and specify, at a process and file level, nodes of the
graph that they want to re-execute, thus saving time and
effort for repeatability testing (Section 2). As a demon-
stration, we show how PTU can be used for repeatabil-
ity testing of workflow-based programs (Section 3). We
conclude in Section 4.

2. PTU: Provenance-to-use
Provenance-To-Use (PTU) [8] is a tool for accelerating
and simplifying repeatability testing. Authors can use
PTU to accomplish two tasks: (1) build a package of
their source code, data, and environment variables, and
(2) record process- and file-level details about a refer-
ence execution in a database that is included in the
package. The resulting package is easily distributed to

testers, who are shielded from software deployment
issues. Recording a reference execution path and run-
time details within the package eases distribution of this
vital information that can guide testers during the test-
ing phase. In particular, testers can explore the prove-
nance graph and accompanying run-time details to
specify the part of the provenance graph that they want
to re-execute or replay: see Figures 1, 2, and 3.

PTU uses CDE [4] to create and run a package. CDE
uses Unix ptrace system call interposition to collect
code, data files, and environment variables. The ptrace
mechanism also allows for auditing file and process
information, which can be transformed for storing a
provenance graph, independent of the application
ptrace. In PTU, we enhance CDE’s use of ptrace to
store a provenance graph representing a reference run-
time execution at the process and file level. We de-
scribe how authors and testers can use PTU.

Authors use PTU to create a self-contained package
with a reference execution by prepending the applica-
tion command with the ptu-audit tool as in the follow-
ing example, which involves the Java application Tex-
tAnalyzer applied to a file news.txt:

% ptu-audit java TextAnalyzer news.txt

The ptu-audit tool uses ptrace to monitor ~50 system
calls including process system calls, such as execve()
and sys_fork(), for collecting process provenance; file
system calls, such as read(), write(), and sys_io(), for
collecting file provenance; and network calls, such as
bind(), connect(), socket(), and send() for auditing net-
work activity. Whenever system calls occur, PTU notes
the identifier of the process that made the system call so
that it can extract more information about the process
from the Linux /proc file system. In particular, we ob-
tain process name, owner, group, parent, host, creation
time, command line, and environment variables; and
file name, path, host, size, and modification time. A
separate thread is used to obtain memory footprint,
CPU consumption, and I/O activity data for each pro-
cess from /proc/$pid/stat every three seconds.

In the case of distributed applications involving multi-
ple compute nodes, network activity is audited inde-
pendently at each node using ptrace, i.e., without coor-
dination with other nodes. CDE makes all network sys-
tem blocking during auditing. Thus, the process record
is always present and the information extracted will be
current and accurate. PTU stores provenance infor-
mation about processes and files as a graph in an
SQLite database. This information can be displayed in a

browser in the form of an Open Provenance Model
(OPM) [9] compliant provenance graph.

Currently, PTU’s provenance collector makes two as-
sumptions. First, only network connection information
is audited and no network dumps are made. Thus, while
a tester can replay a computation between exactly the
same set of hosts they cannot do so without conducting
network communication. Second, PTU does not audit
non-deterministic functions such as ctime() and ran-
dom(). Relaxing these assumptions to build a general,
distributed audit system is part of our ongoing work.

When a system call (file or network) returns, and if a
new file or network does not exist, PTU emulates CDE
functionality. In the case of a file, it copies the accessed
file into a package directory that consists of all sub-
directories and symbolic links to the original file’s loca-
tion. In the case of network communication, it saves a
log of the network connection information, including IP
and port information, ordered by time. The package
directory also contains the SQLite database that stores
the provenance information of the test run.

When the entire reference run finishes, PTU builds a
reference execution file consisting of the topological
sort of the provenance graph. The nodes of the graph
enumerate run-time details, such as process memory
consumption, and file sizes. The tester, as described
next, can utilize the database and the graph for efficient
re-execution.

Testers can examine the provenance graph contained in
a package to study the accompanying reference execu-
tion. This graph can be viewed at the granularity of
processes and files, and can aid the tester in visually
determining parts of the program that they wish to re-
execute. For processes, an accompanying bar graph
shows CPU and memory consumption. A tester can
then request a re-execution, either by specifying nodes
in the provenance graph or by modifying a run configu-
ration file that is included in the package. The configu-
ration file initially specifies the provenance graph, cor-
responding to the reference execution, ordered topolog-
ically. A tester can turn flags on or off for each process
and file in the provenance graph, to specify if the pro-
cess needs to be run or if the file needs to be re-
generated, respectively.

To re-run the package, testers prepend the program
command with a ptu-exec tool as follows:

% ptu-exec java	
 TextAnalyzer	
 news.txt

The ptu-exec tool uses the provenance graph/run con-
figuration file to determine if any additional process(es)
must be run or file(s) re-generated. A re-run of a process
or a regeneration of a file is mandatory if:

(1) A process/file is in the descendent sub-graph of an-
other process that is marked for re-running.

(2) A process/file is in the descendent sub-graph of an-
other file that is marked for regeneration.

Re-running these additional processes and regenerating
the files is necessary to maintain consistency of the
provenance that will be obtained from the test run. To re-
execute, ptu-exec obtains run configuration and envi-
ronment variables for each process from the SQLite da-
tabase. To re-execute a process, ptu-exec again monitors
it via ptrace and re-executes CDE functionality of re-
placing path argument(s) to refer to the corresponding
path within the package cde-package/cde-root/. By doing
so, CDE creates a chroot-like sandbox that tricks the
target program into ‘believing’ that it is executing on the
original machine [4]. The following are two of the sever-
al ptu-exec command-line options that allow testers to
control testing.

• -time -t1 <t1> -t2 <t2> implies the tester can re-
execute everything between t1 and t2. If t1 is null or
t2 is null, execution is performed from beginning to
t2 or t1 till end, respectively. This option avoids the
need to modify the run configuration file.

• -input <p> <f1> <f2> allows the user to specify
input f1 instead of f2 for process with id <p>. This
option helps user test correctness of the process.

PTU provides fast audit and re-execution independent
of the application. The profiling of processes enables
testers to choose the processes to run.

3. Use Case and Experiments
To test PTU we took two papers [10, 11] in which au-
thors shared data, tools and software. We constructed
meaningful testing scenarios and determined if PTU
provides performance improvements. In the first paper,
Best et. al. [10] describes PEEL0, a three step workflow
process implemented as an R-program. The second
step, which executes a classification model, is memory-
intensive, with a typical run taking a gigabyte of real
memory. To reduce memory consumption, testers may
want to input a reduced dataset size and/or test a sim-
pler classification model. (The user can specify the
classification model used via a command line option.)

Our second program, TextAnalyzer, is based on the
Java-based Unstructured Information Management

Architecture (UIMA) and runs a named-entity recogni-
tion analysis program using several data dictionaries
[11]. It splits the input file into multiple input files on
which it runs a parallel analysis. The tester may want to
rerun the program on one input split, but with higher
convergence criteria. CDE allows testing without in-
stalling R and UIMA, as would normally be required,.

TESTER’s COMPUTER

PTU

write($PKG_ROOT/data/out.dat)

read($PKG_ROOT/data/in.dat)
!"#$%&''()*+,)

-./012

Verify, Start calculate and Redirect

!"#$%&''()*+,)
34.35.4/02

)64/4)2
37,8964/2

CDE read()

)64/4)2
75/964/2

:/5;456+/2:/5;0<032

"17=0,4,302>?22
!!!

$PKG_ROOT/
 bin/
 calculate
 filter
 data/
 in.dat
 out.dat

PTU Package

Read Graph

)64/4)2
+,964/2

!"#$#!%
&'()*"#$%

!"#$#!%
'+$*"#$%

!,-(!%
.'/01'.%

!,-(!%
&+2#$3%

!,-(!%
42$3/%

!,-(!%
&'(53/$%

!,-(!%
/3&2#66%

!,-(!%
78$9'(%

Provenance DB

fork() fork()

fork()

fork()

fork()

read()

write()

fork()

!"#$#!%
-(*"#$%

read()

$PKG_ROOT/
 bin/
 workflow
 reclass
 calculate
 filter
 convert
 python
 data/
 conf.dat
 in.dat
 out.dat

PTU Package

!"#$%#&'"(

read(conf.dat)

)&%"%)(
*+,-.&%"(

C

op
y

A
pp

lic
at

io
n

Fi
le

s

/0+12,%,*2(34((
!!!

fork()

)5',)6+078+6(

)5',)(
02*9%::(

PTU

)5',)(
%9#9%"2(

fork()

 Start workflow and Audit

AUTHOR’s COMPUTER

$PKG_ROOT/
 bin/
 workflow
 reclass
 calculate
 data/
 conf.dat

!"#$2;2*(

PTU Package

E
ve

nt
s

Figure 1. ptu-audit builds a package of prove-
nance events and copies application files

Figure 2. The PTU package. The tester chooses
to run the sub-graph rooted at /bin/calculate

 Figure 3. ptu-exec re-runs part of the applica-
tion from /bin/calculate. It uses CDE to re-route
file dependencies.

The graphs generated at the process and file level in
both programs are large. PEEL0 generates a provenance
graph with five process nodes, 10000 exclusive file
reads based on the number of files in the dataset, and
422 exclusive file writes for the aggregated dataset. In
TextAnalyzer, a single run generates a provenance
graph of eight process nodes that in aggregate conduct
616 exclusive file reads, 124 exclusive file writes, and
50 file nodes that are read and written again.

In our experiment, we measure execution times by
modifying the PTU configuration file to specify that
different inputs should be used for selected processes.
For PEEL0, the change involves a different set of input
files, and a simplified classification scheme; in the case
of TextAnalyzer it is the set of process identifiers to re-
execute with a different parameter value. The prove-
nance graphs and configuration files for the programs
are available online [8].

Figures 4 and 5 show the performance improvements
observed when we thus use PTU to run PEEL0 and Tex-
tAnalyzer, respectively, with different parameters. Note
first the slow down incurred during the reference execu-
tions: ~35% for PEEL0 and ~15% for TextAnalyzer.
This slowdown is due to additional system call tracing,
with in particular many file system calls traced for
PEEL0. These modest increases in execution times are
easily offset during the re-execution phase. TextAna-
lyzer has a particularly large improvement (>98%)
since the entire process is run on a much smaller file.

4. Conclusion

PTU is a step toward testing software programs that are
submitted to conference proceedings and journals to
conduct repeatability tests. Peer reviewers often must
review these programs in a short period of time. By
providing one utility for packaging the software pro-
grams and its reference execution without modifying

the application, we have made it easy and attractive for
authors to use it and a fine control, efficient way for
testers to use PTU.

5. Acknowledgements
We thank Neil Best and Jonathan Ozik for sharing their
paper and code. This work was supported by the Center
for Robust Decision making on Climate and Energy
Policy under NSF grant number 0951576. Contractors
of the US Government under contract number DE-
AC02-06CH11357 performed the work.

6. References
1. Bonnet, P., et al., Repeatability and workability evaluation of

SIGMOD 2011. SIGMOD Record, 2011. 40(2): p. 45-48.
2. Freire, J., et, al. Computational reproducibility: state-of-the-art,

challenges, and DB research opportunities, SIGMOD, 2012.
3. Sasha, D., Repeatability & Workability for the Software

Community: Challenges, Experiences, and the Future, At:
http://www.cs.utah.edu/~eeide/archive10/slides/shasha.pd.

4. Guo, P. et. al., CDE: Using System Call Interposition to
Automatically Create Portable Software Packages, USENIX,
2011.

5. Bavoil, L., et al. VisTrails: enabling interactive multiple-view
visualizations. In Visualization, 2005.

6. Stodden, V., C. Hurlin, and C. Perignon. RunMyCode.Org. In
eSoN, 2012. At: http://www.runmycode.org/CompanionSite/

7. Pham, Q., et al., SOLE: linking research papers with science
objects, in IPAW, 2012.

8. Pham, Q., PTU: Using Provenance for Repeatability Testing,
2013. At: http://www.ci.uchicago.edu/SOLE/PTU.html.

9. Moreau, L., et al., The Open Provenance Model core
specification (v1.1). FGCS, 2011. 27(6): p. 743-756.

10. Best, N., et. al., Synthesis of a Complete Land Use/Land Cover
Dataset for the Conterminous United States. RDCEP Working
Paper, 2012. 12(08).

11. Murphy, J., et. al., Textual Hydraulics: Mining Online
Newspapers to Detect Physical, Social, and Institutional Water
Management Infrastructure, 2013, Technical Report, Argonne
National Lab.

112	

986	

38	

347	

0	

200	

400	

600	

800	

1000	

1200	

MODIS	
 dataset	
 LANDSAT	
 dataset	

Ru
nt
im
e	

(s
ec
on
ds
)	

3-­‐step	
 work?low	
 with	
 7	

classi?ication	

3-­‐step	
 work?low	
 run	
 with	

PTU	
 with	
 1	
 classi?ication	

!"

#!!"

$!!"

%!!"

&!!"

'!!!"

'#!!"

()*+," -./*,.0"

12
34

5
6"7

,6
89
3:

;<" =>;?6@"A9BCD9A"AE?F"
G"8HI;;EJ8I493;"

=>;?6@"A9BCD9A"
B6@HIK6:"E3"L0M"AE?F"
'"8HI;;EJ8I493"

Figure 4. Time reduction in testing PEEL0 using PTU

72.0	

28.9	

2.8	

87.4	

32.5	

13.4	

1.8	
 0.5	
 0.1	

0.0	

10.0	

20.0	

30.0	

40.0	

50.0	

60.0	

70.0	

80.0	

90.0	

100.0	

Real	
 time	
 User	
 time	
 System	
 time	

Ru
nt
im
e	

(s
ec
on
ds
)	

No	
 CDE	
 monitored	

CDE	
 monitored	
 for	

provenance	
 &	
 package	

Replay	
 one	
 process	
 within	

CDE	
 package	

!"#$%&'

"(#)$"'

"#(**'

(!#*+'

%"#&$&'

+%#*$('

+#!!%' $#&")' $#+'
$'

+$'

"$'

%$'

*$'

&$'

,$'

!$'

($'

)$'

+$$'

-./0'12.' 34.5'12.' 6748.2'12.'

-9
:1

2
.';

4.
<=
:>

4?'

@='A=:B8=5B:C'

DE3'/9>B8.>'F=5'G5=H.:/:<.'I'
G/<J/C.'
-.G0/7'KB8L'0=K.5'<=:H.5C.:<.'
<5B8.5B/'

Figure 5. Time reduction in testing TextAnalyzer using PTU

